• 11111
  • 首页
  • 期刊介绍
  • 编委会
  • 征稿启事
  • 期刊订阅
  • 相关下载
  • 学术道德
  • 联系我们
引用本文:刘婷,麻海燕,吴彰钰,余红发,张锦华.碱式硫酸镁水泥混凝土的冲击压缩性能[J].建筑材料学报,2021,24(3):562-570
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 354次   下载 69 本文二维码信息
码上扫一扫!
分享到: 微信 更多
碱式硫酸镁水泥混凝土的冲击压缩性能
刘婷1, 麻海燕1, 吴彰钰1, 余红发1, 张锦华2
1.南京航空航天大学民航学院,江苏南京211106;2.东南大学土木工程学院,江苏南京211189
摘要:
采用75mm分离式霍普金森压杆测试了碱式硫酸镁水泥混凝土(BMSCC)的力学性能,并借助Ls Dyna软件和Holmquist Johnson Cook(HJC)模型,模拟了BMSCC的动态冲击力学响应.结果表明:BMSCC是典型的率相关性材料,具有明显的应变率增强效应,其冲击压缩强度随着应变率的提高而增大,动态增强因子与应变率的对数呈线性关系.通过数值模拟确定了HJC模型的21个参数,其中冲击压缩强度和峰值应变的模拟相对误差分别为-39%~09%和-100%~32%,模拟效果较好.
关键词:  碱式硫酸镁水泥混凝土  分离式霍普金森压杆  应变率效应  动态增强因子  数值模拟
DOI:103969/j.issn.1007 9629202103016
分类号:
基金项目:国家自然科学基金资助项目(11832013,51878350,51678304,51508272)
Impact Compressive Properties of Basic Magnesium Sulfate Cement Concrete
LIU Ting1, MA Haiyan1, WU Zhangyu1, YU Hongfa1, ZHANG Jinhua2
1.College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;2.School of Civil Engineering, Southeast University, Nanjing 211189, China
Abstract:
The mechanical properties of basic magnesium sulfate cement concrete(BMSCC) was tested using the 75mm diameter split Hopkinson pressure bar. The finite element software Ls Dyna and Holmquist Johnson Cook(HJC) model were used to simulate the mechanical response of BMSCC under impact loading. The results show that BMSCC is a typical rate dependent material with the pronounced strain rate hardening effect and its impact compressive strength increases with increasing strain rate. As a parameter characterizing the dynamic characteristics of brittle materials, dynamic increase factor is linearly related to the logarithm of strain rate. By using Ls Dyna software to simulate the impact compression process, 21 parameters of the HJC model are determined. The relative errors of impact compressive strength and peak strain are -39%09% and -100%32%, respectively. The simulation effect is quite satisfactory.
Key words:  basic magnesium sulfate cement concrete(BMSCC)  split Hopkinson pressure bar  strain rate effect  dynamic increase factor  simulation