基于性价比优化的混凝土配方设计模型
DOI:
CSTR:
作者:
作者单位:

1.广州大学;2.中山市东峻混凝土有限公司;3.珠海春禾新材料研究院有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


The design model of concrete mix proportion based on the cost performance optimization
Author:
Affiliation:

1.GuangZhou University;2.DongJun concrete co., LTD;3.Zhuhai Chunhe New Material Research Institute Co.Ltd;4.Zhongshan DongJun concrete co., LTD

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    收集了502组混凝土的配方作为训练数据,采用遗传算法优化BP神经网络并结合粒子群算法的方法建立了混凝土的成本控制和配方优化模型。本模型在粒子群算法的目标函数中引入惩罚函数,考虑混凝土的原材料成本以及影响混凝土抗压强度的多个关键因素,对目标函数的适应度值进行惩罚,解决了混凝土配方设计中非线性约束离散变量问题和连续变量问题,从而达到控制混凝土成本和优化其配方的目的。通过建立的模型输出27组降低成本后的混凝土配方,并进行抗压强度试验,试验结果表明:由模型计算得到的配方成本与目标成本的契合度接近97%,降低混凝土单方成本5元、10元、15元后,模型输出的配方均能满足强度要求。

    Abstract:

    The Concrete mix proportion of 502 groups was collected as training data, and the model constructed by the BP neural network which optimized by genetic algorithm combined with particle swarm optimization algorithm.The punishment function was append to the objective function of the particle swarm optimization in modelling. Considering the raw material cost of concrete and several key factors affecting the compressive strength of concrete, the fitness value of objective function to punish, solve the concrete mix proportion in the design of nonlinear constraints discrete variables and continuous variables, and thus achieve the goal of control concrete cost and optimize the mix proportion. The 27 sets of concrete mix ratios after cost reduction are obtained, and the compressive strength test was conducted by the established model. The test results show that the fit ratio of the ratio of the combined ratio cost to the target cost is close to 97%, When the concrete cost per cubic meter is reduced by 5 yuan, 10 yuan and 15 yuan, the performance of mix ratio exported by the model meets the strength requirements.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-05
  • 最后修改日期:2019-07-07
  • 录用日期:2019-07-16
  • 在线发布日期:
  • 出版日期:
文章二维码