文章编号:1007-9629(2021)06-1131-08

不同镁硅摩尔比下水化硅酸镁凝胶的微观结构

肖建敏, 胡亚茹

(西安建筑科技大学材料科学与工程学院,陕西西安710055)

摘要:利用X射线衍射技术(XRD)和²⁹Si固体核磁共振(²⁹SiSSNMR)技术,对不同镁硅摩尔比下氧 化镁/硅灰(MgO/SF)试样的水化产物进行了微观结构和形成机理研究.结果表明:生成的水化硅酸 镁凝胶(M-S-H)聚合度较高,结构复杂,M-S-H的形成离不开氢氧化镁(MH)的形成和解离,二者在 Mg²⁺的争夺方面存在竞争关系;MgO/SF试样水化反应早期主要生成MH,后期主要生成M-S-H凝 肢,龄期的延长有助于M-S-H的聚合,长龄期养护有利于Q¹向Q²、Q²向Q³的转化;富镁条件促进了 M-S-H的生成,长龄期下Mg²⁺起拆网作用,支链硅氧四面体含量增多;贫镁条件下试样中剩余大量 SF未参与反应,长龄期下Mg²⁺起补网作用,用于构建层状硅酸盐骨架;M-S-H凝胶是以层状硅氧四 面体为主体、包含端链和支链硅氧四面体的复杂非晶相无序结构.

关键词:镁硅摩尔比;水化硅酸镁凝胶;微观结构;形成机理

中图分类号:TQ172.79 文献标志码:A **doi:**10.3969/j.issn.1007-9629.2021.06.002

Microstructure of Magnesium Silicate Hydrates in Different Mg/Si Molar Ratios

XIAO Jianmin, HU Yaru

(College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China)

Abstract : The microstructure and formation mechanism of hydration products of magnesia/silica fume (MgO/SF) pastes in different Mg/Si molar ratios were investigated by X-ray diffraction(XRD) and ²⁹Si solid state nuclear magnetic resonance(²⁹Si SSNMR) respectively. The results reveals that the formed magnesium silicate hydrates(M-S-H) is a complex structure with a high degree of polymerization, and the formation of M-S-H is related to the formation and decomposition of magnesium hydroxide (MH). It is inevitable that M-S-H and MH competes for the acquisition of Mg²⁺. MH is mainly formed in the early hydration age of MgO/SF pastes while M-S-H is mainly formed in the late hydration age. The prolongation of hydration time is conductive to polymerization of M-S-H, and the long curing age is good for the conversion of Q¹ to Q² and Q² to Q³. The MgO/SF paste with higher Mg/Si molar ratio promotes the formation of M-S-H, and Mg²⁺ plays the role of dismantling network in long curing age, as the result, the content of chain tetrahedra increases. A large amount of unreacted SF remains in the MgO/SF pastes with lower Mg/Si molar ratio, and Mg²⁺ plays the role of network supplementation in long curing age, which is used to construct layered silicate skeleton of M-S-H. M-S-H is a complex amorphous structure with mainly layered tetrahedra and chain tetrahedra and branching chain tetrahedra.

Key words: Mg/Si molar ratio; magnesium silicate hydrates(M-S-H); microstructure; formation mechanism

水化硅酸镁(M-S-H)凝胶最早发现于海水侵蚀混 凝土中¹¹,后在包含硫酸镁的地下水与混凝土接触的表

收稿日期:2020-08-10;修订日期:2020-10-15

基金项目:陕西省自然科学基金基础研究计划项目(2021JQ-500);国家重点研发计划课题(2017YFB0309903-03);陕西省教育厅重点科学研究计划(20JS079);陕西省教育厅一般专项科学研究计划(20JK0727)

第一作者:肖建敏(1988—),女,陕西安康人,西安建筑科技大学工程师,硕士.E-mail:xiaomin0622@126.com

面或含镁黏土与水泥基材料接触的过渡区域被发现^[25]. M-S-H一度被认为是胶凝组分遭受硫酸盐侵蚀形成的 二次水化产物^[5-7].最新研究表明,M-S-H作为一种潜在 的低pH值胶凝材料广泛应用于核废料包裹领域,其良 好的表面光泽、抗冲击性以及优良的力学性能使其成 为非常有前景的新型胶凝材料和墙体保温材料^[8-10].

近年来,研究学者利用含结晶水的硅酸镁矿物 典型代表(蛇纹石^[11]、海泡石^[12]和滑石^[13])来类比研究 M-S-H分子结构,发现M-S-H分子结构与天然硅酸 镁相T-O型(硅氧四面体-镁氧八面体)和T-O-T型 (硅氧四面体-镁氧八面体-硅氧四面体)结构类 似^[14-16],是以硅氧四面体和镁氧八面体数量2:1或1: 1为典型代表的层状硅酸盐结构.

X射线衍射(XRD)图谱显示,M-S-H在5.0°、 10.0°、19.7°、26.7°、35.0°、59.9°处呈现较宽的弥散 峰^[15,17-18].鉴于M-S-H凝胶为无定型相,其较宽的衍 射峰易被混杂的晶体结构掩盖,故需要借助固体核 磁共振、傅里叶变换红外光谱等可进行无序结构测 定的表征仪器对其进行微观结构分析.

关于 M-S-H 的形成机理,多数学者^[89,19]认为活性 MgO 遇水后溶解反应生成 Mg(OH)₂,即 MH, SiO₂遇水解离为SiO²⁻₄,SiO²⁻₄与 MH形成 M-S-H凝胶, MH为中间产物;而李兆恒^[20]认为 MH和 M-S-H 同时生成,二者在 Mg²⁺的争夺方面存在竞争关系.

本文在上述研究成果的基础上,制备了一系列 不同镁硅摩尔比n(Mg)/n(Si)的活性氧化镁/硅灰 (MgO/SF)试样,并利用XRD、²⁹Si固体核磁共振 (²⁹Si SSNMR)技术对凝胶微观结构进行深入分析, 进一步探讨M-S-H形成机理,为新型镁质胶凝材料 的研发和推广奠定理论基础和技术支撑,从而实现 富镁矿产资源的高效利用.

1 试验

1.1 试验原料

碱式碳酸镁,分析纯,分子式(MgCO₃)4·Mg(OH)2· 5H2O,相对分子质量485.80,天津市福晨化学试剂厂 生产.将其置于中温炉内在900℃下煅烧1h,制得活 性MgO^[20],其MgO含量¹⁾为98.72%,XRD图谱如图 1所示.由图1可见,碱式碳酸镁煅烧完全形成MgO, 无其他产物生成.硅灰(SF)取自宁夏某硅铁厂,其化 学组成见表1.

1.2 试样制备与测试方法

按照不同镁硅摩尔比制备 MgO/SF 试样,试样

1)文中涉及的含量、组成和水灰比等除特别说明外均为质量分数或质量比.

 Table 1
 Chemical composition of silica fume

w/%

CaO	SiO_2	$\mathrm{Al}_2\mathrm{O}_3$	MgO	F_2O_3	SO_3	IL	Total
0.08	90.72	0.42	0.85	0.12	0.66	2.28	95.13

总质量为5g,具体配合比见表2.称取不同质量的 MgO和SF粉末,利用手动搅拌机对粉体进行混合,为 了加快反应进程,保证MgO/SF试样能够完全反应, 并实时监控孔溶液pH值变化,将水灰比确定为 10^[21-22].先将称取好的蒸馏水加入到100mL聚乙烯广 口瓶中,然后将混合粉体逐渐加入到蒸馏水中,并搅 拌均匀.将加水混合均匀后的试样密封,常温养护至 3、7、28、180 d.到达规定龄期后,将试样倒入10mL 离心管并置于离心机中进行离心操作,转速设定为 1000 r/min,离心时间30 min,离心后的液体与固体 分别标记备用.固体试样浸泡于无水乙醇中24 h,终 止水化,然后倾倒乙醇,将固体试样放置于蒸发皿 中,在40℃真空干燥箱中烘干至恒重.

表 2 MgO/SF试样配合比 Table 2 Mix proportion of MgO/SE somm

1 able 2	Mix proportion of MigO/S	F samples
<i>n</i> (Mg)/ <i>n</i> (Si)	m(MgO)/g	m(SF)/g
0.6	1.45	3.55
0.8	1.75	3.25
1.0	2.00	3.00
1.2	2.20	2.80
1.5	2.50	2.50
2.0	2.85	2.15

将液体样品置于上海精科公司的雷磁pH计上进行 测量,pH值测量范围为0~14.00,温度补偿范围为0~ 60.0 ℃.将固体试样磨成粉末状,进行 XRD 和²⁹Si SSNMR分析.XRD分析采用日本理学Rigaku型X射线

1133

衍射仪,Cu靶Ka线,管电压为40 kV,管电流为40 mA, 扫描范围为5°~80°,扫描速率为10(°)/min,步宽为 0.02(°)/步.²⁹Si SSNMR 试验使用瑞士 Bruker 公 司 AVANCE 400(SB)全数字化核磁共振谱仪,配 合4 mm/15 kHz 固体¹⁵N~³¹P探头.谱仪磁场强度为 9.40 T,固体功放300 W.魔角调试用KBr标样完成.²⁹Si 的共振频率为79.49 MHz.²⁹Si SSNMR采用单脉冲序列 采样,90°对应的脉冲宽度为4.1 μ s,脉冲能量为19.54 dB, 对应的弛豫时间 t_1 为10 s,延迟时间 t_2 =5 t_1 =50 s。转子 旋转频率为8 kHz,扫描次数为2 500次.以分析纯高岭 土为²⁹Si 化学位移标样,其化学位移 δ =-91.5.

2 结果与讨论

2.1 孔溶液 pH 值

20 ℃下 MgO/SF 试样孔溶液 pH值如表 3 所示. MgO/SF 试样孔溶液 pH值的变化可间接反映其水化 反应进程。影响其 pH值变化的主要因素有 2个:MgO 水化过程中电离产生 OH⁻,以及 SiO₂溶解过程中消耗 溶液中的 OH⁻.随着 n(Mg)/n(Si)的增加,体系的 pH 值在各个龄期均呈现逐渐增加趋势,这主要是由于浆

Table 3 pH values of MgO/SF paste at 20 °C							
<i>n</i> (Mg)/ <i>n</i> (Si)	3 d	7 d	28 d	180 d			
0.6	9.30	9.65	9.68	9.28			
0.8	9.35	9.60	9.72	9.33			
1.0	9.38	9.63	9.71	9.33			
1.2	9.38	9.72	9.69	9.35			
1.5	9.39	9.72	9.75	9.38			
2.0	9.55	9.84	9.87	9.38			

表3 20℃下MgO/SF试样孔溶液 pH 值

体中MgO含量增多,水解产生的Mg²⁺浓度增大,形成 的MH增多,水溶液中电离产生的OH⁻增多,溶液碱性 增强,pH值升高.而相同n(Mg)/n(Si)下,随着反应龄 期的增长,MgO/SF试样孔溶液的pH值先升高后降 低,在水化28d时达到最高值.由此可知早期主要是 MgO与H₂O反应生成MH,随着时间的推移,SiO₂溶解 过程中会消耗溶液中相当多的OH⁻,进而导致pH值下 降.与文献[16-17]相比,浆体水化早期的pH值略低, 这可能与硅灰本身性质及来源相关,硅灰抑制MH电 离,造成浆体孔溶液pH值较低。因此可利用该方法制 备水化硅酸镁胶凝材料,应用于核废料固封等领域.

Fig. 2 XRD spectra of SF and MgO/SF pastes

2.2 XRD分析

图 2为SF和MgO/SF试样的XRD图谱.由图 2 可以看出:15°~30°处的宽化衍射峰为硅灰中无定型 SiO₂的信号峰;M-S-H凝胶由位于5°~10°、32°~ 38°、58°~62°处的3个漫衍射峰构成;不同n(Mg)/n(Si)下MgO/SF胶凝体系中均未发现未反应的原 料MgO,SF与反应产物MH的衍射信号明显;3 d龄 期下各试样几乎未见M-S-H的信号峰,水化反应生 成大量MH;28 d时,n(Mg)/n(Si)为0.6、0.8、1.0的 试样在37.0°、62.0°处出现微弱的小包峰,在19.7°、 26.7°处的宽化馒头峰被未反应SF的无定型信号 掩盖;180 d时各试样M-S-H的衍射峰信号明显, n(Mg)/n(Si)=0.6的浆体中MH含量最低.

在水化早期,MgO反应较完全,以生成MH为主, 随n(Mg)/n(Si)增大,SF信号峰越来越弱,而MH的含 量增多,M-S-H的衍射峰被高强度的MH衍射峰掩盖, 无法判断其含量的变化情况,需要进一步借助其他表 征手段来分析.水化后期,MH逐渐与SF反应生成较 多的M-S-H凝胶;n(Mg)/n(Si)=0.6时,试样中SF掺 量最大,早期生成的MH会解离与SF反应生成M-S-H 凝胶,导致MH的含量最低,但残留的SiO₂最多;随 着n(Mg)/n(Si)增至1.0,反应产物中MH的含量 不断增加,MH解离后与SF反应生成的M-S-H增 多;n(Mg)/n(Si)增至2.0时,未反应的SF含量很低,大 部分SF与解离后的MH反应生成M-S-H凝胶,但由 于MgO过量,水化产物中MH残余量仍最大.

对比相同n(Mg)/n(Si),不同龄期的试样,以 n(Mg)/n(Si)=1.0为例:养护3d时,水化生成MH; 养护7d时,MH含量略微降低,有少量M-S-H生成; 龄期延长至28d时,M-S-H衍射峰较明显,MH含量 明显降低;养护180d时,MH含量降至最低,大量 M-S-H凝胶生成.这表明随龄期延长MH逐渐解离 与SF反应生成M-S-H凝胶.

2.3 NMR分析

图 3 是不同龄期下 MgO/SF 试样的²⁹Si SSNMR 图谱.图 4 是 180 d时 n(Mg)/n(Si)为 0.6、1.0、2.0 的 MgO/SF 试样²⁹Si SSNMR 分峰拟合后的图谱.分峰 拟合后 MgO/SF 试样中各 Q^{*}结构的相对含量 *I*(Q^{*}) 计算结果见表4.

由图 3(a)可知:n(Mg)/n(Si)=0.6的试样在化 学位移 δ 为-76.5、-80.8处的峰归属为Q¹硅氧四面 体中的2种结构(Q^{1A}和Q^{1B}),-86.0处的峰对应Q²硅 氧四面体,-93.5处的峰归属为Q³硅氧四面体,其中 180 d时Q³分为2个峰(Q^{3A}和Q^{3B}),对应的化学位移 分别为-93.5、-98.6,以上硅形态化学位移范围为 -75.0~-100.0,归属于 MgO/SF 试样水化产物 M-S-H;-110.9处的强峰和-102.1处的弱峰为未反 应SF中三维网状结构 Q_{silica}^4 和层状结构 Q_{silica}^3 的 SiO₂,其 硅氧四面体分子结构分别为(SiO)₄Si*和(SiO)₃Si*-OH.由图 3(a)~(f)可见,随着 n(Mg)/n(Si)的增大,各硅 形态峰数量保持不变,化学位移的偏差在±0.8之间,表 明n(Mg)/n(Si)对 M-S-H结构影响不大,M-S-H硅骨 架均由端链硅氧四面体 Q^1 、支链硅氧四面体 Q^2 和层状 硅氧四面体 Q^3 构成.

以n(Mg)/n(Si)=1.0为例,比较相同n(Mg)/n(Si)、不同龄期下试样各化学位移处的峰强度和面 积(见图3(c)):在水化早期,M-S-H的形成趋势不明 显,Q¹、Q²和Q³峰强度均很弱,SF几乎未参与反应, 水化3、7d时未反应的SF与原料峰面积几乎相等; 水化28d后,Q^{1A}和Q^{1B}峰面积与龄期7d时相比增幅 不大,Q²和Q³相对含量变化也不明显.由表4可见: 未反应的SF相对含量为56.2%,其中层状SiO。结构 Q_{slice}^3 相对含量为4.3%;180 d时,Q²和Q³峰面积较 28 d 时 增 幅 很 大, Q³ 相 对 含 量 由 28 d 时 的 16.2 % 增 至45.2%(I(Q^{3A})+I(Q^{3B})),未反应的SF相对含量则 降至 25.8% $(I(Q_{\text{silica}}^4))$, 且层状 SiO₂结构 Q_{silica}^3 消失. 上述结果表明,M-S-H相对含量随着龄期的延长而 增多,未反应的SF中 Q_{slice}^4 相对含量随着龄期的延长 而降低.在M-S-H的形成过程中,Q²和Q³的形成速 度大于Q¹,而在水化早期(3~28 d),Q²的形成速度明 显高于Q³;水化后期,Q³形成速度加快,延长水化时 间更利于Q¹向Q²、Q²向Q³转化,尤其促进了层状硅 氧四面体Q³的形成,龄期越长,M-S-H硅氧四面体聚 合度越高.180 d时M-S-H结构中Q³表现为类蛇纹型 (Q^{3A})和类滑石型(Q^{3B})的亚纳米结构,分别表示每个 硅氧四面体层之间相互连接的Si配位和硅氧四面体 层内部的Si配位,层状硅氧四面体结构的多样性证 明了长龄期养护更容易形成层状硅酸镁结构;而SF 中层状 SiO₂结构 Q³_{silica}的消失,表明在长龄期养护下 层状SiO₂更易与活性MgO结合生成M-S-H.

在 180 d时,比较不同n(Mg)/n(Si)的试样²⁹Si SSNMR图谱和分峰拟合后各结构相对含量(见表4) 可知:n(Mg)/n(Si) < 1.0时,Q¹相对含量变化不明 显,Q²相对含量降低,而层状硅氧四面体Q³相对含量 增加,这表明M-S-H凝胶聚合度提高,M-S-H主体为 层状硅酸盐结构,此时Mg²⁺起到了补网作用^[23],用于 构建层状硅酸盐骨架;1.0 $\leq n(Mg)/n(Si) < 2.0$ 时, 随着n(Mg)/n(Si)的增大,Q¹相对含量降低,Q²相对 含量增加,Q³相对含量降低,说明在Mg²⁺含量较大的 情况下,层状硅酸盐骨架易被破坏,形成链状硅氧四 面体,此时Mg²⁺起到了拆网作用^[23].

利用²⁹Si SSNMR 谱图分峰拟合后 Q³和 Q²相对 含量的比值 $I(Q^3)/I(Q^2)$ 可衡量 M-S-H凝胶的聚合度 和有序度,并确定 M-S-H的结构特征.通过文献研究 得出^[16]:滑石和叶蛇纹石作为典型的层状硅酸盐矿物, 其 $I(Q^3)/I(Q^2) \gg 1.0$;三链状硅氧四面体形态的镁川 石的 $I(Q^3)/I(Q^2) = 2.0$;而硬硅钙石 Ca₆Si₆O₁₇(OH)₂的 $I(Q^3)/I(Q^2) = 0.5$,其硅酸盐骨架结构为双链,且每2 个支链位点 Si—O—Si有断键.由表4可见:180 d时不 同n(Mg)/n(Si)的试样 $I(Q^3)/I(Q^2)$ 呈现先增大再减 小再增大的趋势; $n(Mg)/n(Si) = 0.8 \text{时}I(Q^3)/I(Q^2)$ 值 最高,为3.6,且各n(Mg)/n(Si)下2.0<I(Q³)/I(Q²) <4.0.该结果表明M-S-H凝胶并非高度有序结构,其 聚合度较高,且结构复杂,是以层状硅氧四面体为主 体、包含端链和支链硅氧四面体的复杂非晶相结构, 其硅酸盐骨架中夹杂离子空缺以及支链位点.

为了进一步定量描述 MgO/SF 试样水化反应机 理和水化产物特征,按下式计算 M-S-H凝胶聚合度 CD 和相对反应程度 RD^[24],结果列于表4.

$$CD = \frac{3I(Q^{3}) + 2I(Q^{2}) + I(Q^{1})}{3 \times [I(Q^{3}) + I(Q^{2}) + I(Q^{1})]} \times 100\% (1)$$
$$RD = \frac{I(Q^{1}) + I(Q^{2}) + I(Q^{3})}{I(Q^{1}) + I(Q^{2}) + I(Q^{3}) + I(Q^{3}_{silica}) + I(Q^{4}_{silica})} \times 100\% (2)$$

(f) n(Mg)/n(Si)=2.0

图 3 不同龄期下 MgO/SF 试样的²⁹Si SSNMR 图谱 Fig. 3 ²⁹Si SSNMR spectra of MgO/SF pastes under different ages

(c) n(Mg)/n(Si)=2.0

图 4 180 d时 n(Mg)/n(Si)为 0.6、1.0、2.0的 MgO/SF 试样²⁹Si SSNMR 分峰拟合后的图谱 Fig. 4 Deconvolution demonstration of ²⁹Si SSNMR spectra for MgO/SF pastes with n(Mg)/n(Si)=0.6, 1.0, 2.0 at 180 d

	表4 分峰拟合后 MgO/SF 试样中各 Q [*] 结构的相对含量
Table 4	Relative concent of different silicon sites of MgO/SF pastes obtained from deconvolution demonstration of ²⁹ Si SSNMR spectra

Age/d	n(Mg)/n(Si)	M-S-H			Unreacted silica		$I(O^3)$			
		<i>I</i> (Q ^{1A})/	<i>I</i> (Q ^{1B})/ ⁰∕₀	$I(\mathbf{Q}^2)/\frac{9}{6}$	$I(\mathbf{Q}^3)/\sqrt[9]{0}$	$\frac{I(\mathbf{Q}_{\mathrm{silica}}^3)/}{\sqrt[0]{0}}$	$I(\mathbf{Q}_{\mathrm{silica}}^4)/$	$\frac{I(\mathbf{Q}^2)}{I(\mathbf{Q}^2)}$	CD/%	RD/%
28	0.6	3.9	4.1	12.3	23.4	0.3	55.9	1.9	78.4	43.7
	0.8	3.0	6.9	12.4	23.2	2.8	51.8	1.9	76.4	45.5
	1.0	5.4	6.8	15.3	16.2	4.3	51.9	1.1	69.7	43.7
	1.2	5.0	4.6	21.3	17.2	14.0	38.0	0.8	71.9	48.1
	1.5	7.5	4.0	20.3	18.3	9.2	40.6	0.9	71.2	50.2
	2.0	0	7.7	6.7	28.0	1.8	54.0	4.2	82.6	43.2
180	0.6	2.1	9.2	15.4	$34.6(Q^{3A}), 6.3(Q^{3B})$		32.5	2.7	81.3	67.5
	0.8	5.2	6.0	11.7	31. $6(Q^{3A}), 10. 0(Q^{3B})$		35.4	3.6	82.4	64.6
	1.0	4.4	9.9	14.6	$39.5(Q^{3A}), 5.7(Q^{3B})$		25.8	3.1	80.6	74.2
	1.2	3.6	5.8	18.9	$35.8(Q^{3A}), 7.8(Q^{3B})$		28.1	2.3	82.5	71.9
	1.5	4.7	2.9	18.7	$31.3(Q^{3A}), 7.8(Q^{3B})$		32.2	2.1	82.7	67.0
	2.0	3.0	7.6	18.7	43.5 (Q^{3A}) , 6.7 (Q^{3B})		20.5	2.7	83.3	79.5

由表4可见:28 d时 M-S-H 凝胶聚合度 CD 随 n(Mg)/n(Si)增大呈先降低后增加的趋势,与n(Mg)/n(Si)=0.6 的试样相比,其他试样 CD 均有所下 降(n(Mg)/n(Si)=2.0时除外),这表明水化早期活 性 MgO 含量富余,利于端链和支链硅氧四面体的形成而阻碍层状硅氧四面体的形成,CD下降;180 d时 CD 随 n(Mg)/n(Si)增大变化趋势规律性不强,但各试样 CD 均大于 80%,表明长龄期下

M-S-H凝胶已高度聚合,层状硅氧四面体仍为其主体结构;相同n(Mg)/n(Si)下,CD随龄期延长而增大,表明龄期的延长有助于M-S-H的聚合,长龄期养护有利于Q¹向Q²、Q²向Q³的转化;在长龄期下,富镁条件($1.0 \le n(Mg)/n(Si) \le 2.0$)比贫镁条件($n(Mg)/n(Si) \le 1.0$)下试样的相对反应程度RD要高,表明富镁条件促进了M-S-H的生成,SF参与反应的程度提高,贫镁条件下SF除参与反应生成M-S-H凝胶外,还有大量无定型SiO₂残余;相同n(Mg)/n(Si)下RD随着龄期的延长而增大,表明水化早期主要生成MH,M-S-H凝胶含量较少,大量SF残余,水化后期M-S-H凝胶的含量不断增加,这与XRD分析得出的结论一致.

综上,根据XRD物相分析与²⁹Si SSNMR结构 分析结果可知,M-S-H的形成过程是由MgO的溶 解、MH的形成、MH的解离与SF的反应等步骤构 成,MH是M-S-H形成的中间产物,也是富镁硅酸盐 水泥的水化产物,M-S-H的形成离不开MH的形成 和解离,且二者在Mg²⁺的争夺方面存在竞争关系, M-S-H凝胶含量随着水化反应进程发展逐渐增多, M-S-H凝胶聚合度较高,但结构复杂,是以层状硅氧 四面体为主体的复杂非晶相无序结构.

3 结论

(1)MgO/SF试样孔溶液pH值随龄期延长而先 升高再降低,相同龄期下随镁硅摩尔比增加而增大, pH值越大,水溶液中电离产生的OH⁻越多,MH含 量越高.

(2)MgO/SF试样水化反应早期主要生成MH, M-S-H凝胶含量较少;后期MH含量减少,M-S-H凝 胶含量不断增大.水化龄期的延长有助于M-S-H的 聚合,长龄期养护有利于Q¹向Q²、Q²向Q³的转化.

(3) 富镁条件促进了 M-S-H 的生成, SF 参与反 应的程度提高,长龄期下 Mg²⁺起到拆网作用,支链硅 氧四面体含量增多;贫镁条件下试样在生成 M-S-H 凝胶的同时还剩余大量 SF, Mg²⁺起到了补网作用, 用于构建层状硅酸盐骨架.

(4)M-S-H凝胶聚合度较高,是以层状硅氧四面 体为主体、包含端链和支链硅氧四面体的复杂非晶 相无序结构.

参考文献:

[1] COLE W F. A crystalline hydrated magnesium silicate formed in the breakdown of a concrete sea-wall [J]. Nature, 1953, 171:354-355.

- [2] GARCIA CALVO J L, HIDALGO A, ALONSO C, et al. Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression [J]. Cement and Concrete Research, 2010, 40(8):1290-1297.
- [3] JENN A, MÄDER U, LEROUGE C, et al. In situ interaction between different concretes and opalinus clay[J]. Physics and Chemistry of the Earth, 2014, 70/71:71-83.
- [4] DAUZERES A, ACHIEDO G, NIED D, et al. Magnesium perturbation in low-pH concretes placed in clayey environment— Solid characterizations and modeling [J]. Cement and Concrete Research, 2016, 79:137-150.
- [5] DE WEERDT K, JUSTNES H. The effect of sea water on the phase assemblage of hydrated cement paste [J]. Cement and Concrete Composites, 2015, 55:215-222.
- [6] SANTHANAM M, COHEN M D, OLEK J. Mechanism of sulfate attack: A fresh look - Part 1: Summary of experimental results [J]. Cement and Concrete Research, 2002, 32 (6): 915-921.
- [7] 宋强,胡亚茹,王倩,等.水化硅酸镁胶凝材料研究进展[J]. 硅酸盐学报,2019,47(11):1642-1651.
 SONG Qiang, HU Yaru, WANG Qian, et al. Research development of magnesium silicate hydrate cement[J]. Journal of the Chinese Ceramic Society, 2019,47(11):1642-1651.(in Chinese)
- [8] ZHANG T, CHEESEMAN C R, VANDEPERRE L J. Development of low pH cement systems forming magnesium silicate hydrate(M-S-H)[J]. Cement and Concrete Research, 2011, 41(4):439-442.
- [9] FEI J, AL-TABBAA A. Strength and hydration products of reactive MgO-silica pastes[J]. Cement and Concrete Research Composites, 2014, 52:27-33.
- [10] WEI J X, YU Q J, ZHANG W S, et al. Reaction products of MgO and microsilica cementitious materials at different temperatures[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(4):745-748.
- [11] D'ESPINOSE DE LA CAILLERIE J B, KERMAREC M, CLAUSE O. ²⁹Si NMR observation of an amorphous magnesium silicate formed during impregnation of silica with Mg(II) in aqueous solution [J]. The Journal of Physical Chemistry, 1995, 99(47):17273-17281.
- [12] BREW D R M, GLASSER F P. Synthesis and characterization of magnesium silicate hydrate gels[J]. Cement and Concrete Research, 2005, 35:85-98.
- [13] 徐嘉欣.高分散型六角片状氢氧化镁的制备与表征[D].上海:华东师范大学,2018.
 XU Jiaxin. Preparation and characterization of high dispersion hexagonal magnesium hydroxide [D]. Shanghai: East China Normal University, 2018. (in Chinese)
- BERNARD E, LOTHENBACH B, CHLIQUE C, et al. Characterization of magnesium silicate hydrate (M-S-H) [J]. Cement and Concrete Research, 2019, 116:309-330.
- [15] ROOSE C, GRANGEON S, BLANC P, et al. Crystal struc-

ture of magnesium silicate hydrates (MSH) : The relation with 2:1 Mg-Si phyllosilicates [J]. Cement and Concrete Research, 2015, 73:228-237.

- [16] NIED D, ENEMARK-RASMUSSEN K, L'HOPITAL E, et al. Properties of magnesium silicate hydrates (M-S-H) [J]. Cement and Concrete Research, 2016, 79:323-332.
- [17] BERNARD E, LOTHENBACH B, RENTSCH D, et al. Formation of magnesium silicate hydrates (M-S-H)[J]. Physics and Chemistry of the Earth, 2017, 99, 142-157.
- WALLING S A, KINOSHITA H, BERNAL S A, et al. Structure and properties of binder gels formed in the system Mg(OH)₂-SiO₂-H₂O for immobilisation of magnox sludge[J]. Dalton Transactions, 2015, 44(17):8126-8137.
- [19] SZCZERBA J, PROROK R, ŚNIEZEK E, et al. Influence of time and temperature on ageing and phases synthesis in the MgO-SiO₂-H₂O system[J]. Thermochimica Acta, 2013, 567: 57-64.
- [20] 李兆恒. MgO-SiO₂-H₂O胶凝体系的反应机制及应用研究 [D]. 广州:华南理工大学, 2015.

LI Zhaoheng. Reaction mechanisms and application study of

MgO-SiO₂-H₂O cementitious system [D]. Guangzhou: South China University of Technology, 2015. (in Chinese)

- [21] ZHANG T T, VANDEPERRE L J, CHEESEMAN C R. Formation of magnesium silicate hydrate(M-S-H) cement pastes using sodium hexametaphosphate[J]. Cement and Concrete Research, 2014, 65:8-14.
- [22] ZHANG T T, LIANG X M, LI C M, et al. Control of drying shrinkage in magnesium silicate hydrate (M-S-H) gel mortars[J]. Cement and Concrete Research, 2016, 88:36-42.
- [23] 贾援. MgO-SiO₂-H₂O 胶凝体系在 Na-HMP和 CaO 作用下的 反应机理研究[D]. 大连:大连理工大学, 2017.
 JIA Yuan. Effect of Na-HMP and CaO on the reaction mechanism of MgO-SiO₂-H₂O system[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
- [24] MARTINI F, TONELLI M, GEPPI M, et al. Hydration of MgO/SiO₂ and Portland cement mixtures: A structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy [J]. Cement and Concrete Research, 2017, 102:60-67.