文章编号:1007-9629(2022)03-0294-06

基于剪切松弛试验的沥青低温 劲度模量反演方法

王 勤¹, 杜镇 $r^{2,3,4,*}$, 毛菊 r^{1} , 肖飞鹏^{2,3}, 袁 捷^{2,3}

(1.上海同济检测技术有限公司,上海 200092; 2.同济大学 道路与交通工程教育部重点实验室,上海 201804; 3.同济大学 民航飞行区设施耐久与运行安全重点实验室,上海 201804;
 4.中国民用航空飞行学院 机场学院,四川 广汉 618307)

摘要:利用动态剪切流变仪(DSR)对不同沥青进行低温剪切松弛试验,获得剪切松弛模量,并求出蠕 变柔量的解析解和 Matlab解,进而反演得到劲度模量(S_{shear})及其变化率(m_{shear});另外利用弯曲梁流 变仪(BBR)测得沥青劲度模量(S)及其变化率(m),对反演结果 S_{shear}、m_{shear}进行验证.结果表明: Matlab求解方法与解析解法虽直观表达形式不同,但结果大小相当;同种沥青的 S_{shear}与S值存在稳 定比例关系,比例系数约为4.5;不同沥青在60 s时的 S_{shear}、m_{shear}值与 BBR 实测结果呈正比关系,比例 系数分别约为4.5和1.1;从 Kendall 获相关系数来看,不同沥青反演结果与实测结果排序具有良好的 一致性,故通过剪切松弛试验对沥青低温劲度模量进行反演是可行的.

关键词:劲度模量;剪切松弛试验;改性沥青;反演

中图分类号:U414.1 **文献标志码:**A

doi:10.3969/j.issn.1007-9629.2022.03.011

Back Calculation Method of Asphalt Stiffness Modulus Based on Shear Relaxation Test

WANG Qin¹, DU Zhenyu^{2,3,4,*}, MAO Juliang¹, XIAO Feipeng^{2,3}, YUAN Jie^{2,3}

(1. Shanghai Tongji Testing Technology Co., Ltd., Shanghai 200092, China; 2. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China; 3. The Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China;
 4. Airport College, Civil Aviation Flight University of China, Guanghan 618307, China)

Abstract: The dynamic shear rheometer(DSR) was used to carry out low-temperature shear relaxation tests on different asphalt binders, and the shear relaxation modulus were obtained. The analytical solution and Matlab solution of creep compliance were obtained, and then the stiffness modulus (S_{shear}) and modulus change rate(m_{shear}) were back calculated. The bending beam rheometer(BBR) was used to measure the low temperature stiffness modulus(S) and modulus change rate(m) of different asphalt binders, and the back calculated results of S_{shear} and m_{shear} were verified. The results show that the stiffness modulus calculated by Matlab is different from the intuitive expression of analytical solution, but the magnitude is almost the same. There is a stable proportional relationship between the S_{shear} of the same asphalt binders and the measured S value by BBR, and the proportional coefficient is about 4.5. The results show that there is a positive correlation between the measured results of BBR and the values of S_{shear} and m_{shear} of different asphalt binders at 60 s, and the coefficients are about 4.5 and 1.1 respectively. From the Kendall

收稿日期:2020-11-20;修订日期:2021-01-18

基金项目:国家重点研发计划项目(2019YFB1310603)

第一作者:王 勤(1963—),男,上海人,上海同济检测技术有限公司高级工程师,本科.E-mail:sunnyq218@163.com

通讯作者:杜镇宇(1991一),男,四川平昌人,中国民用航空飞行学院讲师,博士.E-mail:182468014@qq.com

rank correlation coefficient, the back calculated results of different asphalt binders are in good agreement with the measured results, so it is feasible to inverse the low temperature stiffness of asphalt through low temperature shear relaxation test.

Key words: stiffness modulus; shear relaxation test; modified asphalt; back calculation

沥青路面的低温开裂一直是道路工程中常见的 病害之一.用于沥青低温性能评价的方法很多,例如 延度试验[1]、测力延度试验[2-3]、玻璃化转化温度试 验[4]、弗拉斯脆点试验[5]等.但是,不同方法均存在其 缺陷和局限性.弯曲梁流变仪(BBR)试验是美国公 路战略研究计划(SHRP)提出的沥青低温性能评价 手段^[6],该试验广泛应用于高校及科研机构.但是, 该试验中沥青小梁样本制作过程较繁杂,且沥青用 量较多,制样方法对测试结果的影响显著[7].由于动 态剪切流变仪(DSR)制样方便且测试方法简单,越 来越多的研究人员开始采用DSR对沥青的低温性 能进行评价.Sui等[8-9]基于DSR,利用4mm转子,通 过频率扫描获得松弛模量主曲线,进而评价沥青的 低温性能;王超^[10]则采用DSR评价老化对沥青低温 性能的影响.但是,在实际研究过程中,更多使用的 是 8 mm 转子和 25 mm 转子, 且做主曲线的过程较 繁琐.

综上,越来越多研究人员开始采用DSR 对沥青 的低温性能进行评价,但不同的试验方法和评价指 标均存在一些局限性.因此,本文基于DSR 试验设 备,采用8 mm转子,在低温下直接进行剪切松弛试 验,获取低温剪切松弛模量,反演出劲度模量 S_{shear} 和模量变化率 m_{shear},并将其与弯曲梁流变仪实测的 劲度模量 S和模量变化率 m进行对比分析,以证明 该方法的可靠性,为改性沥青低温性能评价提供 参考.

1 试验

1.1 原材料

沥青来源分别为山东京博沥青(JB-70#)和2种 针入度的90#辽宁盘锦沥青(PJ-90#A和PJ-90#B). 所采用的聚乙烯改性剂为中石化生产的低密度聚乙 烯(LDPE),掺量(质量分数)分别为2%、4%、7%,对 应沥青试件编号形式为"沥青标号-LDPE掺量". SBS改性沥青为道路工程中常用的厂拌成品I-D级 改性沥青(SBS-I-D).

1.2 试验方法

1.2.1 弯曲梁流变仪(BBR)试验

弯曲梁流变仪采用Canon公司生产的弯曲梁流

变仪.试验温度设置为一6℃,小梁试件尺寸为长 127.00 mm、高6.35 mm、宽12.70 mm.试验过程中的 跨中荷载为(980±50) mN.试件浇筑前,所有沥青样 品均先进行短期老化(RTFOT),后进行长期老化 (PAV).

1.2.2 剪切松弛试验

采用英国Malvern公司生产的动态剪切流变仪 (DSR),所有沥青试样均进行短期老化(RTFOT)和 长期老化(PAV),再进行剪切松弛试验.

(1)试验温度的确定 考虑到仪器低温加载范围的限制,同时也为了和BBR所得低温劲度模量进行比较.基于动态剪切流变仪进行剪切松弛试验时,将温度设为-6℃.

(2)剪切应变的确定 根据BBR的试验结果可 知,随着LDPE掺量的增加,改性沥青模量不断增 大,且标号越高的改性沥青模量越小.考虑到低温条 件下进行剪切松弛试验时,过大的应变会造成材料 的损伤;另外,由于仪器本身的限制,过小的应变会 造成较大误差.因此,分别采用0.1%、1.0%及10.0% 的加载应变,对模量最大的JB-70#-7%改性沥青在 -6℃下进行剪切松弛试验,进而确定加载应变,试 验结果见图1.由图1可见:在0.1%和1.0%的加载应 变下,各应力-时间曲线趋势一致,均为应力随加载 时间延长而增大,到某一峰值后应力开始减小;而在 10.0%的加载应变下,曲线出现1个水平段,这可能 是在低温下,过大的加载应变造成了材料的破坏,故 排除10.0%的加载应变.

为了进一步比较0.1%和1.0%加载应变,在2种 加载条件下进行多次重复试验,结果见图2.由图2可 知:在较小的加载应变(0.1%)下,剪切应变波动范围 较大,最大超过10.0%;而在较大的加载应变(1.0%) 下,应变-时间曲线更稳定.

综上所述,在进行剪切松弛试验时,选择1.0% 的加载应变.

(3)剪切时间的确定 考虑到仪器所能承受的降 温范围,所有沥青试样均先在-6℃下保温10min,再 进行松弛,松弛时间为10min.

1.3 理论基础

1.3.1 模量反演思路

劲度模量反演的主要思路如下:通过DSR进行 低温剪切松弛试验,获取沥青的剪切松弛模量,利用 广义Maxwell模型对其进行拟合,再根据松弛模量与 蠕变柔量之间的关系,分别利用Matlab软件和人为 求解析解的方法对蠕变柔量进行求解,进而反演得 到劲度模量;再利用BBR实测劲度模量和模量变化 率对反演结果进行验证分析.

1.3.2 通过松弛模量求解劲度模量

1.3.2.1 解析解法

~

采用五参数广义 Maxwell模型对剪切松弛试验 获得的松弛模量 *E*进行拟合,其表达式如下:

$$E = E_0 + E_1 e^{-\frac{E_1}{\eta_1}t} + E_2 e^{-\frac{E_2}{\eta_2}t}$$
(1)

式中: E_0 、 E_1 、 E_2 均为弹簧拟合参数; η_1 、 η_2 均为黏壶拟

合参数;t为时间.

由Boltzman叠加定理^[11]可知:

$$\widehat{D}(s)\widehat{E}(s) = \frac{1}{s^2}$$
(2)

式中: $\widehat{D}(s)$ 为蠕变柔量的拉普拉斯变换结果; $\widehat{E}(s)$ 为松弛模量的拉普拉斯变换结果;s为拉普拉斯域变量.

将式(1)进行拉普拉斯变换,得:

$$\widehat{E}(s) = \frac{E_0}{s} + \frac{E_1}{s + \frac{E_1}{\eta_1}} + \frac{E_2}{s + \frac{E_2}{\eta_2}}$$
(3)

则:

$$\widehat{D}(s) = \frac{\eta_1 \eta_2 s^2 + (E_1 \eta_2 + E_2 \eta_1) s + E_1 E_2}{(E_0 \eta_1 \eta_2 + E_1 \eta_1 \eta_2 + E_2 \eta_1 \eta_2) s^3 + (E_0 E_1 \eta_2 + E_0 E_2 \eta_1 + E_1 E_2 \eta_1 + E_1 E_2 \eta_2) s^2 + E_0 E_1 E_2 s}$$
(4)

上式必可写成以下形式:

$$\widehat{D}(s) = \frac{C_0}{s} - C_1 \left(\frac{1}{r_1 + s} - \frac{1}{s}\right) - C_2 \left(\frac{1}{r_2 + s} - \frac{1}{s}\right) (5)$$

式中: C_0 、 C_1 、 C_2 、 r_1 、 r_2 均为待定系数,可通过比较式 (4)、(5)的系数求解.

$$\begin{aligned} &\Leftrightarrow: \\ A = \frac{E_0 E_1 \eta_2 + E_0 E_2 \eta_1 + E_1 E_2 \eta_1 + E_1 E_2 \eta_2}{(E_0 + E_1 + E_2) \eta_1 \eta_2} \\ B = \frac{E_0 E_1 E_2}{(E_0 + E_1 + E_2) \eta_1 \eta_2} \\ D = \frac{E_1 \eta_2 + E_2 \eta_1}{(E_0 + E_1 + E_2) \eta_1 \eta_2} \end{aligned}$$
(6)

$$\begin{cases} r_{1} = \frac{A - \sqrt{A^{2} - 4B}}{2} \\ r_{2} = \frac{A + \sqrt{A^{2} - 4B}}{2} \\ C_{0} = \frac{1}{E_{0} + E_{1} + E_{2}} \\ C_{1} = \frac{D - C_{0}A - r_{1}/E_{0} + C_{0}r_{1}}{r_{2} - r_{1}} \\ C_{2} = 1/E_{0} - C_{1} - C_{2} \end{cases}$$
(7)

进而将式(5)做拉普拉斯逆变换,可得劲度模量*S*_{shearl}:

$$S_{\text{shearl}} = 1/D(t) = 1/L^{-1} \left\{ \widehat{D}(s) \right\} = \frac{1}{C_0 + C_1 (1 - e^{-r_1 t}) + C_2 (1 - e^{-r_2 t})}$$
(8)

$$\begin{aligned} \vec{x} \oplus : L^{-1} \dot{b} \vec{u} \stackrel{\text{d}}{=} \vec{u} \stackrel{\text{d}}{=} \vec{x} \stackrel{\text{d}}{=} \vec{y} \stackrel{\text{d}}{=} \vec{y}$$

求得蠕变柔量 $D(t)后,进而求其倒数得到沥青的劲度模量<math>S_{\text{shear2}}$.

1.3.3 *m*_{shear}的计算

借鉴弯曲梁流变仪对*m*值的定义^[12],计算反演 得到的劲度模量*S*_{shearl}在60s时的变化率,记作*m*_{shearl}.

2 反演及实证分析

一6℃下不同沥青的剪切松弛模量见图 3. 由图 3 可知,松弛能力最强的是 PJ-90#A 基质沥青,最差的 是 JB-70#-7%LDPE 改性沥青.利用五参数广义 Maxwell模型(式(1))对图 3中不同改性沥青的松弛 模量进行拟合,计算结果见表 1. 由拟合所得方程,通过1.3.2中2种劲度模量反 演方法计算不同沥青的劲度模量,由其直观表达式 可知,二者并不一致.为比较2种方法所得结果的一 致性,以PJ-90#A沥青为例,将2种方法所得结果作 差,如图4所示.由图4可知,2种方法所得结果作 差,如图4所示.由图4可知,2种方法所得劲度模量 之差绝对值在近10⁻⁹MPa量级范围内,故可认为2种 方法所得结果大小相当.因此,在劲度模量反演的过 程中,可利用Matlab将实测的剪切松弛模量直接做 拉普拉斯逆变换后再对劲度模量进行求解,这样可 避免人为求解析解的复杂计算过程.后文所用反演 劲度模量*S*_{shear}均为Matlab求解结果.

BBR 实测劲度模量 S 与反演劲度模量 S_{shear} 对

	Table 1 Fitting results of measured shear relaxation modulus of asphalts								
Asphalt	E_0/kPa	E_1/kPa	E_2/kPa	η_1/kPa	η_2/kPa	R^2			
PJ-90#A	2 192	5 565	14 520	688 200	118 300	0.99			
PJ-90#A-2%	2 753	6 793	15 860	941 000	148 500	0.99			
PJ-90#A-4%	4 291	9 360	16 930	144 800	194 000	0.99			
PJ-90#A-7%	6 273	10 970	17 450	1 864 000	237 500	0.99			
PJ-90#B	2 543	7 823	17 810	1 068 000	169 800	0.99			
PJ-90#B-2%	3 940	21 780	9 659	252 000	1 477 000	0.99			
PJ-90#B-4%	4 831	21 990	10 950	278 100	1 777 000	0.99			
PJ-90#B-7%	6 447	22 300	12 440	314 700	2 137 000	0.99			
JB-70#	4 270	28 670	13 020	410 900	2 158 000	0.99			
JB-70#-2%	5 960	28 630	13 960	444 600	2 445 000	0.99			
JB-70#-4%	6 335	29 000	15 160	445 000	2 741 000	0.99			
JB-90#B-7%	9 302	28 860	17 300	561 400	3 559 000	0.99			
SBS-I-D	2 896	9 468	22 310	1 379 000	250 000	0.99			

表1 各沥青实测松弛模量拟合结果

比见图 5. 由图 5 可知:反演劲度模量与实测劲度 模量的曲线形式和趋势基本一致,但二者的绝对 值并不相同;*S*/*S*_{shear}比较稳定,约为一直线,其均值 大概在 4.5 左右,如图 5(c)所示.这可能是由于 2 种

加载模式的不同而造成的:DSR 剪切松弛试验的 加载模式为旋转剪切,而 BBR 的加载模式为 弯拉.

取不同沥青在60s时的实测劲度模量与反演劲 度模量进行对比,结果如图6所示.由图6可知,通过 剪切松弛试验反演所得劲度模量与BBR实测劲度模 量之间具有较好的线性关系,故可以通过剪切松弛 试验来预估沥青低温下的劲度模量.

Fig. 5 Comparison of BBR measured and back calculated stiffness modulus

将各沥青60s时的反演劲度模量S_{shear}和实测劲度 模量S进行排序,结果见表2.由表2可知,2种劲度模 量的排序基本一致,Kendall秩相关系数达0.9231,故 可以通过反演劲度模量来大致比较不同沥青的劲度 模量.

不同沥青在60s时的实测劲度模量变化率*m*与反 演变化率*m*_{shear}见图7.由图7可知,二者具有较强的线性 关系,相关系数*R*²达到了0.99,比例系数为1.1.说明可

Fig. 6 Measured and back calculated stiffness modulus of different asphalts at 60 s

Asphalt	$S_{ m shear}$	S	$m_{ m shear}$	m	
PJ-90#A	1	1	10	11	
PJ-90#A-2%	2	2	8	9	
PJ-90#A-4%	5	3	4	5	
PJ-90#A-7%	8	8	1	1	
PJ-90♯B	3	4	11	12	
PJ-90♯B-2%	6	6	9	8	
PJ-90♯B-4%	7	7	6	6	
PJ-90♯B-7%	10	9	3	2	
JB-70#	9	10	12	10	
JB-70#-2%	11	11	7	7	
JB-70#-4%	12	12	5	4	
JB-70#-7%	13	13	2	3	
SBS-I-D	4	5	13	13	
Kendall	0.92	0.9231		0.8718	

图 7 不同沥青在 60 s 时的劲度模量变化率 m 与反演 变化率 m_{shear}

以通过 m_{shear}的值对 m进行估计,将二者数值从小到大进行排序,结果也列于表2.由表2可见,其Kendall秩相关系数达0.8718,说明二者的一致性较高.

3 结论

(1)解析解和 Matlab 解这 2 种劲度模量反演方 法表达式不同,但计算结果误差范围在近 10⁻⁹ MPa 量级范围内,可认为二者所得结果一致.故可利用 Matlab直接做拉普拉斯逆变换来反演得到沥青的劲 度模量,省去人为求解析解的复杂计算过程.

(2)反演劲度模量与实测劲度模量曲线形式和 趋势一致,且二者之间存在稳定的比值关系,比值的 均值约为4.5,这可能是由于动态剪切流变仪剪切松 弛试验为旋转剪切加载,而弯曲梁流变仪试验为弯 拉加载所致.

(3)不同沥青 60 s时的反演劲度模量与 BBR 实 测劲度模量具有较强的线性关系,其比例系数在4.5 左右,劲度模量变化率反演结果与实测结果的比例 系数为1.1.从 Kendall 秩相关系数来看,反演结果与 实测结果具有良好的一致性.

(4)由于有限的试验量,反演劲度模量与实测劲度 模量及其变化率的比例系数有待于更多种类改性沥青 的进一步修正,且其他温度条件有待后续进一步研究.

参考文献:

- [1] YU R, FANG C Q, LIU P, et al. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite [J]. Applied Clay Science, 2015, 104:1-7.
- [2] QIAN C D, FAN W Y. Evaluation and characterization of properties of crumb rubber/SBS modified asphalt[J]. Materials Chemistry and Physics, 2020, 253:123319.
- [3] XUOM, LIMY, HOUDH, et al. Engineering and rheological properties of asphalt binders modified with microwave preprocessed GTR[J]. Construction and Building Materials, 2020, 256:562-569.
- WANG T, XIAO F P, AMIRKHANIAN S, et al. A review on low temperature performances of rubberized asphalt materials[J]. Construction and Building Materials, 2017, 145:483-505.
- [5] RYS D, JACZEWSKI M, PSZCZOLA M, et al. Effect of bitumen characteristics obtained according to EN and Superpave specifications on asphalt mixture performance in low-temperature laboratory tests[J]. Construction and Building Materials, 2020, 231:117156.
- [6] 王岚,王子豪,李超.基于黏弹性理论的多聚磷酸改性沥青低 温性能[J].复合材料学报,2017,34(2):322-328.

(下转第313页)