文章编号:1007-9629(2022)05-0509-07

基于因子设计法优化和预测水下不分散混凝土的 抗分散性能

张 营¹, 孙国文^{1,2}, 张国强^{3,*}, 王彩辉^{1,2}, 王亚倩¹

(1.石家庄铁道大学材料科学与工程学院,河北石家庄 050043;2.河北省交通工程与环境 协同发展新材料重点实验室,河北石家庄 050043;3.石家庄铁道大学四方学院 基础部,河北石家庄 051132)

摘要:为了对影响水下不分散混凝土施工质量最关键的3个技术指标(絮凝性、流动性和水陆强度比)进行优化设计以及预测,在试验数据的基础上,采用因子设计法对其进行了优化计算和建模.试验设计了3个因子:水胶比(m_w/m_B)为 $0.35\sim0.45$,絮凝剂(AWA)用量为 $0.20\%\sim1.50\%$,减水剂(PC)用量为 $1.20\%\sim1.80\%$.结果表明:水下不分散混凝土最佳水灰比、AWA用量和PC用量分别为0.39、0.86%、1.47%,预测水下不分散混凝土对应的扩展度为184.0 mm,悬浊物含量为113.2 mg/L,水陆强度比为77.4%.

Optimization and Prediction for Anti-washout Ability of Underwater Concrete Based on Factorial Design

ZHANG Ying¹, SUN Guowen^{1,2}, ZHANG Guoqiang^{3,*}, WANG Caihui^{1,2}, WANG Yaqian¹

(1. School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;

 Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang 050043, China;
 Foundational Subjects Department, Shijiazhuang Tiedao University Si Fang College,

Shijiazhuang 051132, China)

Abstract: In order to optimize the design and forecast of the three most critical technical indicators that affect the quality of underwater concrete construction: anti-washout, slump and underwater/in-air strength ratio. Based on the experimental data, the factorial design method was used to optimize calculation and modeling. In the experiment, the water-binder ratio(m_w/m_B) was from 0.35 to 0.45, and the amount of anti-washout admixture(w_{AWA}) was $0.20\% \sim 1.50\%$, the amount of superplasticizer(w_{PC}) was from 1.20% to 1.80%. The results show that underwater concrete has excellent properties. The best values of m_w/m_B , w_{AWA} and w_{PC} are 0.39, 0.86% and 1.47%, respectively. The theoretical prediction is that the corresponding slump of underwater concrete is 184.0 mm and the suspension content is 113.2 mg/L, the underwater/in-air strength ratio is 77.4%.

Key words: underwater concrete; factorial design; anti-washout; underwater/in-air strength ratio; slump; error analysis

收稿日期:2021-02-28;修订日期:2021-07-06

基金项目:国家自然科学基金资助项目(51778378)

第一作者:张 营(1994—),女,河北保定人,石家庄铁道大学硕士生.E-mail:Zy202021@126.com

通讯作者:张国强(1977—),男,河北张家口人,石家庄铁道大学四方学院讲师,硕士.E-mail: zhangguoqiang801@sohu.com

水下不分散混凝土的絮凝性、流动性和水陆强 度比是保障水下工程施工质量的关键性能^[1],传统的 性能设计方法均为基于经验的强度设计理论,已不 能满足复杂水域工况下的施工技术需求.为了确定 性能影响因素之间的相互关系,常采用正交设计法 进行试验设计,该方法虽可满足一般试验需求,但无 法找到各影响因素交互的最佳平衡点,也不能对混 凝土性能进行有效预测[2].研究人员仍在不断探索基 于性能需求的新设计方法.Cui等^[3]采用多因素方差 分析法确定了调节凝结时间、抗压强度以及抗分散 性能的设计方法.Song等^[4]为了提高水下灌浆的抗分 散性能,通过单因素法研究了合成抗分散剂的抗分 散性能.Jiang等^[5]采用单因素法确定了水下抗分散剂 的配比和砂浆中水溶性聚合物的适宜用量.Sonebi 等[6-7]基于遗传规划方法确定了自密实混凝土新拌和 硬化性能较好的试验配比.

试验设计是一种安排试验和分析试验数据的数 理统计方法^[8].在各试验设计法中,因子设计法不但 可以分析各因子间交互作用对试验结果的影响^[9],而 且能在给定的约束条件下建立优化的试验方案并进 行性能预测^[10],已在新产品开发、工程试验等领域得 到应用^[11].对水下施工用的不分散混凝土,因施工周 围水域环境多变,如何对其各项性能进行适时调控 和预测,是当前迫切需要解决的难题.本文基于因子 设计法,对影响水下不分散混凝土性能的水胶比¹¹、 絮凝剂用量、减水剂用量这3个关键因子进行设计, 并建立扩展度(流动性衡量指标)、悬浊物含量(絮凝 性衡量指标)和水陆强度比的数学预测模型,以满足 基于性能需求的工程需求.

1 试验

1.1 原材料

胶凝材料采用上海舜安建材有限公司生产的双 快硫铝酸盐水泥(C);絮凝剂采用羟丙基甲基纤维素 (AWA),由石家庄市瑞鑫纤维素有限公司生产;减 水剂采用自主合成的聚羧酸减水剂(PC).

1.2 试验方法

参照 GB/T 8077—2012《混凝土外加剂匀质性 试验方法》进行扩展度(S)测试,以扩展度(S)来表征 水下不分散混凝土的流动性.

参照 GB/T 37990—2019《水下不分散混凝土絮 凝剂技术要求》测试悬浊物含量(W),以此来表征水 下不分散混凝土的絮凝性. 参照GB/T 37990—2019《水下不分散混凝土絮 凝剂技术要求》,在空气中和水下进行试件的成型和 养护;参照GB/T 50081—2019《混凝土物理力学性 能试验方法标准》,进行28d抗压强度的测试以及水 陆强度比(P)的计算.

2 因子设计法对水下不分散混凝土絮 凝性的设计与优化

2.1 因子设计法的原理

因子设计法通过分析不同因子的不同水平,来 估计单因子作用和多因子之间的相互作用,可分为 单因子、全因子和部分因子设计.

克服单因子试验中交互问题的一种方法是: 在1个试验中计算各因子所有可能的组合,这种 方法称为全因子设计法.全因子设计法是一种理 想的设计,完整的因子设计允许在有或没有交互 作用的情况下,对其性能进行建模预测,并且当因 子数量增加时,可以快速发现应用程序的限制,可 确定因子对响应的影响以及不同因子之间的相互 作用^[12].本文考虑到水下不分散混凝土抗分散性 影响因素相互交织,因此选用全因子设计法.全因 子设计法中每个因子的水平限制为2个(低和 高),一般全因子设计法的因子数量不超过5个, 否则耗时成本太高.

全因子设计法中实际的因子范围需要转换为无 量纲编码值ψ,其计算如下^[13]:

$$\psi = \frac{A_i - \frac{1}{2} (A_{\max} + A_{\min})}{\frac{1}{2} (A_{\max} - A_{\min})}$$
(1)

式中:A_i为某个因子;i为该因子按照大小的排序; A_{max}为该因子的最大值;A_{ma}为该因子的最小值.

2.2 因子设计法在水下不分散混凝土抗分散性能设 计中的应用

2.2.1 水下不分散混凝土抗分散性能的因子设计

由文献[14-15]可知,影响水下不分散混凝土抗 分散性能的3个主要因子是水胶比(m_w/m_B)、絮凝 剂用量(w_{AWA})和减水剂用量(w_{PC}),其中w_{AWA}和w_{PC} 以水泥质量计.设计因子编码与水平如表1所示,其 中全因子设计法每个因子取低(-1)和高(+1)2个 水平,设计时以(0)为中心点,根据式(1)计算因子 编码.

根据优化结果选择低、高水平的因子进行试验 设计,全因子设计2³编码形式的数学模型如下:

Level					
Factor Va	v ariable	-1	0	+1	
$w_{ m PC}/\%$	x_1	1.20	1.50	1.80	
$w_{\rm AWA}/\frac{0}{0}$	x_2	0.20	0.85	1.50	
$m_{ m W}/m_{ m B}$	x_3	0.35	0.40	0.45	

$$a_{13}x_1x_3 + a_{23}x_2x_3 + e \tag{2}$$

式中:Y为预测值;a。为全局平均值;a,为模型回归系

数,即自变量对响应的贡献; x_1 、 x_2 、 x_3 分别为变量 w_{PC} 、 w_{AWA} 、 m_W/m_B ;e为不受控制变量影响的随机误 差项.

2.2.2 水下不分散混凝土抗分散性能因子设计的模型导出过程

采用全因子设计法,根据表1建立水下不分散混凝土的流动性(衡量指标为扩展度(S))、絮凝性(衡量指标为基础物含量(W))和水陆强度比(P)的统计模型,模拟 w_{AWA}、w_{PC}和 m_w/m_B对水下不分散混凝土流动性、絮凝性和水陆强度比的影响,结果如表2所示.

表 2 基于因子设计法的试验配比及试验结果 Table 2 Mix proportion and test results based on factorial design method

					8		
T.	Mix No	Level			Test result		
Item		$w_{ m PC}$	$w_{\rm AWA}$	$m_{ m W}/m_{ m B}$	S/mm	$W/(mg \cdot L^{-1})$	$P/\sqrt[0]{0}$
	1	-1	-1	-1	94.0	123.0	78.0
	2	-1	-1	1	294.0	197.0	65.0
	3	1	-1	-1	281.0	148.0	67.0
	4	1	-1	1	430.0	217.0	56.0
2° model	5	-1	1	-1	0	46.0	92.0
	6	-1	1	1	147.0	62.0	90.0
	7	1	1	-1	132.0	72.0	82.0
	8	1	1	1	345.0	105.0	76.0
	9	0	0	0	194.0	135.0	73.0
	10	0	0	0	194.0	130.0	75.0
	11	0	0	0	196.0	138.0	76.0
Center point for experimental error	12	0	0	0	200.0	140.0	75.0
	13	0	0	0	190.0	135.0	71.0
	14	0	0	0	200.0	140.0	73.0

根据表2中的试验结果,来判断各因子的影响程度及其相互作用,即*a_i*,计算式如下:

$$a_i = \overline{X}_1 - \overline{X}_2 = \frac{\sum_{i=1}^n V(+i)}{n} - \frac{\sum_{i=1}^n V(-i)}{n} \quad (3)$$

式中:V为试验值; \overline{X} 为平均值; \overline{X} 的下标为试验的组数;n为试验次数.

通过假设检验*t*分布来检验不同模型回归系数*a*_{*i*}的影响程度*t*_{*i*},并判断模型的回归系数是否为显著性系数,计算式如下:

$$\begin{cases} t_{i} = \frac{\left|a_{i}\right|}{\sqrt{\sigma_{x}/N}} \\ \sigma_{x} = \frac{\sum_{y=1}^{m} \left(V_{y} - \overline{V}_{0}\right)^{2}}{m-1} \end{cases}$$
(4)

式中:N为阶乘点的试验次数,本文中为 2^3 ,即N=8; m为中心点的试验次数,m=6; σ_x 为标准差; V_y 为y轴 中心点的观测值, $\overline{V_0}$ 为中心点的平均值. 根据表 2和式(2)~(4)得到的方差分析及显著性 检验结果如表 3~5所示.由统计学可知,当置信度为 95%、自由度(df)为m-1=5时,查t分布表可知 $t_i=$ 2.57,当 $t_i<2.57$ 时,在统计学上对结果的影响可忽 略^[16].表 3~5中在假设检验中常用到p值方法 (p-value),其结果均小于0.05,表明 w_{PC} 、 w_{AWA} 、 m_W/m_B 对水下不分散混凝土流动性、絮凝性和水陆强度比 的影响较为显著.需要说明的是,表 3~5中残差 (residual)计算的是样本观察值与估计值之差的各项 指标;SS为离差的平方和.

根据因子设计法、表 1~5和式(2)可建立 w_{PC} 、 w_{AWA} 、 m_W/m_B 对水下不分散混凝土扩展度(S)、悬 浊物含量(W)和水陆强度比(P)影响的数学 模型:

 $S = 215.38 + 81.63x_1 - 59.38x_2 + 88.63x_3 (5)$ $W = 121.25 + 14.25x_1 - 50x_2 + 24x_3 - 11.75x_2x_3 (6)$ $P = 75.75 - 5.5x_1 + 9.25x_2 - 4x_3 (7)$ 在表 3~5中,方差分析是通过 F 检验来判断模型的回归效果,通过分析剔除不显著系数,使得到的模型准确性更高.回归方程的有效性基于 Fisher统

计,F值为在显著性和一定数量自由度的水平上,构成F分布.残差平方和的计算式见式(8),F值的计算式见式(9),计算结果列于表3~5.

$$M_{\rm SSE} = M_{\rm SST} - M_{\rm SSR} = \sum_{i=1}^{N} (V_i - \overline{V})^2 - \sum_{i=1}^{N} (Y_i - \overline{V})^2 = \sum_{i=1}^{N} (V_i - Y_i)^2$$
(8)

 $F = \frac{U_1}{U_2} = \frac{M_{\rm SSR}/(D-1)}{M_{\rm SSE}/(N-D)}$ (9)

回归平方和; M_{sse} 为残差平方和; U_1 为回归平方和的均方; U_2 为残差平方和的均方;D为显著性参数的个数.

式中: \overline{V} 为试验值的平均; $M_{\rm ssr}$ 为离差平方和; $M_{\rm ssr}$ 为

表 3 流动性回归方程的方差分析及显著性检验结果 Table 3 Analysis results of variance and significance test for *S* model

Table 5 Analysis results of variance and significance test for 5 model							
Parameter	Estimate value	SS	df	$M_{ m SSE}$	F	<i>p</i> -value	
a_0 for S	215.38	144 388.80	3	48 113. 13	109.32	0.0003	
a_1 for $w_{ m PC}$	81.63	53 301.12	1	53 301.12	121.10	0.0004	
a_2 for $w_{ m AWA}$	-59.38	28 203.30	1	28 203.30	64.08	0.0013	
$a_{ m 3}$ for $m_{ m W}/m_{ m B}$	88.63	62 835.12	1	62 835.12	142.77	0.0003	
Residual		1 711.12	4	440.12			
Total		146 099.90	7				

表 4 絮凝性回归方程的方差分析及显著性检验结果 Table 4 Analysis results of variance and significance test for W model

Parameter	Estimate value	SS	df	$M_{\rm SSE}$	F	<i>p</i> -value
a_0 for W	121.25	27 337.0	4	6 834.25	136.23	0.0010
a_1 for $w_{ m PC}$	14.25	1 624.5	1	1 624.50	32.38	0.0108
a_{2} for $w_{ m AWA}$	-50.00	20 000.0	1	20 000.00	398.67	0.0003
$a_{ m _3}$ for $m_{ m _W}/m_{ m _B}$	24.00	4 608.0	1	4 608.00	91.85	0.0024
$a_{ m 23}$ for $w_{ m AWA}$ and $m_{ m W}/m_{ m B}$	-11.75	1 104.5	1	1 104.50	22.02	0.0183
Residual		150.5	3	50.17		
Total		27 187.5	7			

表 5 水陆强度比回归方程的方差分析及显著性检验结果 Table 5 Analysis results of variance and significance test for *P* model

Parameter	Estimate value	SS	df	$M_{\rm SSE}$	F	<i>p</i> -value
a_0 for P	75.75	1 054.5	3	351.50	36.05	0.0024
a_1 for $w_{ m PC}$	-5.50	242.0	1	242.00	24.82	0.0076
a_2 for $w_{ m AWA}$	9.25	684.5	1	684.50	70.21	0.0011
$a_{ m _3}$ for $m_{ m _W}/m_{ m _B}$	-4.00	128.0	1	128.00	13.13	0.0223
Residual		39.0	4	9.75		
Total		1 093.5	7			

根据式(9)得到在置信度为95%时,F值为19.3. 由表3~5可见,扩展度、悬浊物含量和水陆强度比的 F值基本都大于19.3,表明由式(5)~(7)得出的扩展 度、悬浊物含量和水陆强度比模型对试验值的预测 较为准确.

此外,表3~5中的负值表示随着 w_{AWA}、w_{PC}和 m_w/m_B的增大,扩展度、悬浊物含量和水陆强度比3 个模型(式(5)~(7))的预测值降低.在各因子范围 内,固定其中1个因子,采用式(5)~(7)模型可研 究其他因子对性能的影响.由表3~5可知:流动性 模型(扩展度)中 m_w/m_B 和 w_{AWA} 对扩展度的估计值 分别为88.63和59.38,絮凝性模型中 m_w/m_B 和 w_{AWA} 对悬浊物含量的估计值分别为24.00和50.00;当 w_{PC} 固定时, m_w/m_B 增加对扩展度和悬浊物含量的 影响(estimate value)分别是 w_{AWA} 增加时的1.49、 0.48倍;各因子对水下不分散混凝土扩展度影响大 小依次为 $m_w/m_B, w_{PC}$ 和 $w_{AWA},$ 对悬浊物含量影响大 小依次为 $w_{AWA}, m_w/m_B, w_{AWA}$ 和 m_w/m_B 间的相互作 用、 $w_{PC},$ 对水陆强度比的影响大小依次为 w_{AWA}, w_{PC} 和 $m_w/m_B.$

2.2.3 水下不分散混凝土抗分散性能导出模型的可 靠性分析

为了验证统计模型的试验误差,对各因子中心 点的配比进行了6次重复试验.根据表1计算中心点 扩展度、悬浊物含量、水陆强度比的统计结果(平均 值、变异系数、相对误差、标准偏差及平方和的预测 误差),如表6所示.由表6可见,在置信度为95%时, 相对误差均在1.50%~3.00%之间,而且反映一个数 据集离散程度的标准偏差也较小,表明水下不分散 混凝土的扩展度、悬浊物含量和水陆强度比模型(式 (5)~(7))的预测值可靠.

表 6 流动性、絮凝性、水陆强度比的统计结果 Table 6 Statistical results of slump, anti-washout and underwater/in-air strength ratio

Item	S	W	P
Mean value	195.67 mm	136.33 mg/L	73.83%
Coefficient of variation/ $\%$	1.98	2.81	2.49
Relative error/%	1.53	2.21	2.04
Standard deviation	3.88 mm	2.81 mg/L	1.83%
Predicted error of sum of square	108.48	105.60	24.24

相关系数(R²)反映试验值与预测值之间的相关 性,R²越接近100%,说明所选择的因子与测试性能 的相关性越好.通过计算得到扩展度、悬浊物含量和 水陆强度比的相关系数,如表7所示.由表7可知,R² 均大于90%.需要强调的是本文也应用了调整相关 系数(Adj R²)和预测相关系数(Pred R²)来进行校验, 由表7可见,两者均超过90%,而且两者较为接近,说 明所得回归模型较精确.相反,如果两者都较小,则 说明拟合的模型不合理,需要考虑是否有其他对模 型影响较大的因素。

图1给出了扩展度、悬浊物含量和水陆强度比试验值和预测值的对比.由图1可知,各性能指标的试验值和预测值均较为相近,说明 w_{AWA}、w_{PC}、m_w/m_B与流动性、絮凝性和水陆强度比的相关性很好,也反映出水下不分散混凝土流动性、絮凝性和水陆强度比的模型预测精确度较高.

表 7 流动性、絮凝性和水陆强度比的相关系数 Table 7 Correlation coefficient of slump, anti-washout and underwater/in-air strength ratio

			%
Item	S	W	Р
R^2	98.80	99.45	96.43
$\operatorname{Adj} R^2$	97.89	98.72	93.76
Pred R^2	95.18	96.11	85.73

图1 流动性、絮凝性和水陆强度比试验值和预测值的对比

Fig. 1 Comparison of measured values and model predicted values for slump, anti-washout and underwater/in-air strength ratio

3 水下不分散混凝土性能预测

3.1 AWA和PC用量对水下不分散混凝土流动性的 影响

根据式(5)预测AWA和PC用量对流动性的影响,结果如图2所示.由图2可知,当 w_{AWA} 和 m_W/m_B 固定时,随着 w_{PC} 的增加,水下不分散混凝土的流动性增大;当 w_{PC} 和 m_W/m_B 固定时,随着 w_{AWA} 的增加,水下不分散混凝土的流动性减小;当 w_{PC} 和 w_{AWA} 固定时,

随着 m_w/m_B的增大,水下不分散混凝土的流动性增大.对于给定的 m_w/m_B, 当 w_{PC} 增加时,可以得到指定流动性的 w_{AWA}.这可用于选择外加剂的最佳组合,以达到最大的流动性.

3.2 m_w/m_B和 AW 用量对水下不分散混凝土絮凝性的影响

根据式(6)预测水灰比和AWA用量对絮凝性的影响,结果如图3所示.由图3可知:当w_{AWA}和 w_{PC}固定时,随着m_w/m_B的增加,水下不分散混凝土的

悬浊物含量增大,即絮凝性降低;当 w_{PC}和 m_w/m_B固定 时,随着 w_{AWA}的增加,水下不分散混凝土的悬浊物含 量减小,即絮凝性提高;当 w_{AWA}和 m_w/m_B固定时,随着 w_{PC}的增大,水下不分散混凝土的悬浊物含量增大,即 絮凝性降低.对于给定的 w_{PC},当 m_w/m_B增加时,可以 得到指定悬浊物含量的 w_{AWA}.这可用于选择外加剂的 最佳组合,以达到最小的悬浊物含量.

3.3 AWA和PC用量对水下不分散混凝土水陆强度 比的影响

根据式(7)预测AWA和PC用量对水陆强度比的影响,结果如图4所示.由图4可知,当w_{AWA}和m_w/m_B固定时,随着w_{PC}的增加,水下不分散混凝土的水陆强度比(P%)减小;当w_{PC}和m_w/m_B固定时,随着w_{AWA}的增加,水下不分散混凝土的水陆强度比增大;

当 w_{PC}和 w_{AWA}固定时,随着 m_w/m_B的增大,水下不分 散混凝土的水陆强度比减小.对于给定的 m_w/m_B,当 w_{PC}增加时,可以得到指定水陆强度比的 w_{AWA}.这可用 于选择外加剂的最佳组合,以达到最大的水陆强度比.

通过对流动性、絮凝性和水陆强度比模型的全局 优化,得出的最优解为: w_{PC} =1.47%, w_{AWA} =0.86%, m_{W}/m_{B} =0.39.在此条件下预测的S=184.0 mm,W= 113.2 mg/L,P=77.4%.选取上述最优解进行试验验 证,结果如表8所示.由表8可见,预测结果与试验验 证结果基本一致,S、W、P的预测精度均在98%以上.

	表 8	试验验证结果
Table 8	Veri	fied experimental results

Number	$S/{ m mm}$	$W/(\mathrm{mg}\cdot\mathrm{L}^{-1})$	$P/\frac{0}{0}$
1	184.5	114.5	78.0
2	185.0	113.0	77.5
3	186.0	115.0	79.0
Mean value	185.2	114.2	78.2

4 结论

(1)3个因子对水下不分散混凝土流动性(扩展 度衡量)的影响大小依次为*m*_w/*m*_B、*w*_{PC}和*w*_{AWA},对絮 凝性(悬浊物含量衡量)的影响大小依次为*w*_{AWA}、*m*_w/ *m*_B、*w*_{AWA}和*m*_w/*m*_B间的相互作用、*w*_{PC},对水陆强度比 的影响大小依次为*w*_{AWA}、*w*_{PC}、*m*_w/*m*_B.

(2)水下不分散混凝土具有较好絮凝性的最佳 配比为 w_{PC} =1.47%, w_{AWA} =0.86%, m_W/m_E =0.39. 在该配比下预测水下不分散混凝土的流动性为 184.0 mm,絮凝性为113.2 mg/L,水陆强度比为 77.4%.

(3)采用全因子设计法对水下不分散混凝土的 流动性、絮凝性和水陆强度比进行了建模和预测,可 减少试验组数,所建模型预测值精度较高,可有效预 测在试验范围内设计的水下不分散混凝土性能随配 比的变化,进行有针对性的调控.

参考文献:

- MOON H Y, SHIN K J. Frost attack resistance and steel bar corrosion of antiwashout underwater concrete containing mineral admixtures[J]. Construction and Building Materials, 2005, 21 (1):98-108.
- [2] 崔磊.基于响应面法的双层波纹管液压胀形工艺参数优化[D]. 西安:西安石油大学,2019.

CUI Lei. Optimization of hydroforming process parameters of bi-layered bellows based on response surface method[D]. Xi'an: Xi'an Shiyou University, 2019.(in Chinese)

- [3] CUI W, HUANG J Y, SONG H F, et al. Development of two new anti-washout grouting materials using multi-way ANOVA in conjunction with grey relational analysis [J]. Construction and Building Materials, 2017, 156:184-198.
- [4] SONG B D, PARK B G, CHOI Y, et al. Determining the engineering characteristics of the Hi-FA series of grout materials in an underwater condition [J]. Construction and Building Materials, 2017, 144:74-85.
- [5] JIANG C S, LU L N, GUAN S B, et al. Preparation of high performance non-dispersible concrete [J]. Journal of Wuhan University of Technology (Materials Science), 2004(2):67-69.
- [6] SONEBI M, CEVIK A. Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash [J]. Construction and Building Materials, 2009, 23(7):2614-2622.
- [7] KOZA J R. Genetic programming: On the programming of computers by means of natural selection[M]. United States: MIT Press, 1992:69-73.
- [8] 马琳,王伟.DOE全因子实验设计法优化托吡酯微丸制备工艺
 [J].中国新药杂志,2017,26(19):2347-2351.
 MA Lin, WANG Wei. Full factorial DOE optimizes the preparation process of topiramate pellets[J]. Chinese Journal of New Drugs, 2017, 26(19):2347-2351.(in Chinese)
- [9] BIAWAS A, DAS P, MANDAL N K. Factorial designs robust against the presence of an aberration[J]. Statistics and Probability Letters, 2017, 129: 326-334.
- [10] RSNEN E, ANTIKAINEN O, YLIRUUSI J. A new method to predict flowability using a microscale fluid bed [J]. AAPS PharmSciTech, 2003, 4(4):53.
- [11] ABREU-NARANJO R, CRESPO Y A, PEDRETTI E F, et al. Experiments on torrefaction of Dichrostachys cinerea wood: Two-level factorial design and thermogravimetric analysis[J].
 Wood Science and Technology, 2018, 52(1):229-243.
- [12] MONTGOMERY D C. Design and analysis of experiments[M].5th ed. New York: Wiley, 2006.
- [13] SAVIC I M, MARINKOVIC V D, TASIC L, et al. From experimental design to quality by design in pharmaceutical legislation[J]. Accreditation and Quality Assurance, 2012, 17(6): 627-633.
- [14] ASSAAD J J, DAOU Y, KHAYAT K H. Simulation of water pressure on washout of underwater concrete repair [J]. ACI Materials Journal, 2009, 106(6):529-536.
- [15] SONEBI M. Washout resistance of high-performance underwater concrete[J]. Concrete, 2001, 35(1):32-35.
- [16] TODD S , WHITEHEAD J. Confidence interval calculation for a sequential clinical trial of binary responses [J]. Biometrika, 1997, 84(3):737-743.