文章编号:1007-9629(2022)11-1151-09

纳米材料改性再生骨料混凝土断裂性能

罗素蓉*, 林 倩, 李炜源, 王德辉

(福州大学土木工程学院,福建福州 350116)

摘要:将纳米SiO₂(纳米硅溶胶和纳米SiO₂粉末)与纳米CaCO₃粉末加入再生骨料混凝土(RAC)中,制 备得到纳米材料改性RAC.通过三点弯曲梁试验与传统电测法测试其断裂性能.结果表明:适当掺量 的纳米SiO₂和纳米CaCO₃粉末能够有效提高RAC的28d抗压强度与劈裂抗拉强度;分别掺入1.0% 纳米硅溶胶、0.5%纳米SiO₂粉末和2.0%纳米CaCO₃粉末对RAC双K断裂参数和断裂能的提升效果 最佳;相较普通混凝土,纳米材料改性RAC的断裂面出现更多贯通再生骨料的裂缝;纳米材料能够促 进生成致密程度高的水化产物,减少混凝土界面过渡区内部的孔隙数量.

关键词:再生骨料混凝土;双K断裂参数;纳米SiO₂;纳米CaCO₃;纳米压痕

中图分类号:TU528.041 文献标志码:A **doi**:10.3969/j.issn.1007-9629.2022.11.007

Fracture Performance of Recycled Aggregate Concrete Modified by Nanomaterials

LUO Surong^{*}, LIN Qian, LI Weiyuan, WANG Dehui (College of Civil Engineering, Fuzhou University, Fuzhou 350116, China)

Abstract: Recycled aggregate concrete (RAC) was modified by adding nano-SiO₂ (nano-silica sol and nano-SiO₂ powder) and nano-CaCO₃ powder to study the fracture performance. The fracture property of RAC modified by nano-materials was tested by three-point bending beam method and traditional electrical measurement. The results show that the 28 d compressive strength and splitting tensile strength of RAC can be effectively improved by adding proper amount of nano-SiO₂ and nano-CaCO₃. Adding 1.0% nano-silica sol, 0.5% nano-SiO₂ powder and 2.0% nano-CaCO₃ powder respectively has the most effective on the improvement of double-*K* fracture parameters and fracture energy. After the addition of nanomaterials, more cracks pass through the recycled aggregate than that for ordinary concrete; nanomaterials promote production of higher density hydrate and reduction of the number of internal pore in interface transition zone.

Key words : recycled aggregate concrete (RAC) ; double-K fracture parameter; nano-SiO₂; nano-CaCO₃; nanoindentation

再生骨料混凝土(RAC)对实现建筑垃圾再利 用、节约天然资源具有重要意义^[1-3].但再生骨料表面 附着的老旧砂浆使骨料周围存在多重界面过渡 区^[4-6],且因再生骨料生产需进行多次破碎,导致骨料 内部存在一定数量的微裂纹^[7].研究表明^[8-9],随着再 生骨料取代率的增加,其内部多重界面过渡区及微 裂纹等微观结构缺陷使RAC的断裂韧度与断裂能 有所下降,构件裂纹扩展速率增大,裂缝更加密集, 并且断裂多发生在再生骨料表面,呈现从骨料表面 开裂到骨料断裂的过渡.由此可见,再生骨料对 RAC的断裂性能产生较大不利影响.而RAC的断裂 性能又是构件使用寿命及承载能力的关键因素^[8],故 改善RAC断裂性能具有重要意义.

纳米材料粒径小、活性高,常被用来减少RAC

收稿日期:2022-04-29;修订日期:2022-07-03

基金项目:国家自然科学基金资助项目(52078139)

第一作者(通讯作者):罗素蓉(1963-),女,福建尤溪人,福州大学教授,硕士生导师,学士.E-mail:lsr@fzu.edu.cn

微结构上的缺陷^[10-12].纳米SiO₂与纳米CaCO₃能够有效改善界面过渡区的微观结构,填充再生骨料内部 微裂缝,提高RAC的基本力学性能与耐久性^[13-18].掺入适量的纳米SiO₂粉末对RAC双K断裂参数具有一定的提升作用^[19],但关于纳米材料增强RAC断裂 性能的研究还很有限,尤其缺少纳米材料改性RAC 微观结构与断裂性能之间的内在关系研究.

鉴于此,本文采用非标准试件的三点弯曲梁断裂试验,来研究不同掺量的纳米SiO₂(纳米硅溶胶和纳米SiO₂粉末)和纳米CaCO₃粉末对RAC断裂性能的影响,以双K断裂参数和断裂能指标评价纳米材料的改性效果,并结合纳米压痕试验来探究纳米SiO₂和纳米CaCO₃粉末对RAC微观结构的影响,以建立RAC宏观性能与微观性能之间的联系.

1 试验

1.1 原材料及配合比

水泥为炼石牌 P·O 42.5 普通硅酸盐水泥,表观 密度为3150 kg/m³,比表面积为352 m²/kg;粉煤灰 为福建华电可门发电有限公司产Ⅱ级粉煤灰,表观 密度为2300 kg/m³,比表面积为442 m²/kg;再生粗 骨料(RCA)由福建省某片区混凝土框架结构建筑物 拆除的废弃混凝土经机械破碎、清洗并筛分后得到, 粒径为5~20 mm,老砂浆附着率(质量分数,文中涉 及的附着率、水胶比等均为质量分数或质量比)为 20.1%,各项指标符合 II 类再生粗骨料要求^[20];天然 粗骨料(NCA)为天然碎石,粒径为5~20 mm;天然 细骨料为福州市河砂,细度模数为1.78;减水剂为聚 羧酸高效减水剂;拌和水为实验室自来水;纳米硅溶 胶(NSL)为CS-30型nano-SiO₂分散液;纳米 SiO₂粉 末(NSP)为亲水型SiO₂白色粉末;纳米 CaCO₃粉末 (NCP)中的CaCO₃含量为99%.胶凝材料的化学组 成见表1.粗骨料及纳米材料的物理性能分别见 表2、3.

表 1 胶凝材料的化学组成 Table 1 Chemical compositions of cementitious materials

							w/%
Material	CaO	SiO_2	$\mathrm{Al}_2\mathrm{O}_3$	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	SO_3	MgO	IL
Cement	62.53	21.70	4.35	3.32	2.92	2.08	1.60
Fly ash	11.20	46.32	29.51	6.78	0.57	1.34	2.63

Tabla 2	Physica	I properties of coarse aggregate
	表 2	粗骨料的物理性能

Type of aggregate	Apparent density/ (kg•m ⁻³)	Water absorption (by mass)/%	Crushing index (by mass)/%	Mud content(by mass)/ %	Acicular content (by mass)/%
RCA	2 653	4.24	13.0	1.24	0.20
NCA	2 595	0.92	3.9	0.38	1.45
		表3 纳米材料	的物理性能		

 Table 3
 Physical properties of nano-materials

Type of nano-material	w/%	pH valve	$Density/(g\boldsymbol{\cdot} cm^{-3})$	$Viscosity/(mPa {\boldsymbol{\cdot}} s)$	Specific surface area/ $(m^2{\boldsymbol{\cdot}}g^{-1})$	Mean size/nm
NSL	30.0	9.0	1.20	19.1		11.7
NSP	98.2	9.0	0.06(Tap)		210	26.0
NCP	99.0	9.3	0.29(Bulk)		25	40.0

本试验考虑4个变量,分别为再生粗骨料取代率、纳米硅溶胶掺量、纳米SiO₂粉末掺量及纳米CaCO₃粉末掺量.其中3种纳米材料等质量取代水泥,掺入再生粗骨料混凝土中.设置再生粗骨料取代率为0%、50%和100%,掺入纳米材料的试验组采用100%再生粗骨料取代率.参考已有研究成果^[16-17,21-23],将NSL与NSP的掺量选为一致,分别为0.5%、1.0%和1.5%;NCP的掺量为1.0%、2.0%和3.0%.本试验将混凝土的水胶比设置为0.42,砂率设置为33%,其配合比及基本力学性能见表4.

1.2 三点弯曲梁试验

参考文献[24-25],试验采用非标准三点弯曲梁 试件,其尺寸(长(*l*)×高(*h*)×宽(*t*))取为750 mm× 200 mm×100 mm,试件净跨(S)为600 mm,预制裂 缝高度(a₀)为80 mm,初始缝高比(a₀/h)为0.4.三点 弯曲梁试验简图见图1.由于断裂试验起裂具有瞬时 性,起裂荷载较难测得,故各试验组均浇筑5根试件, 并采用钢模成型,在标准养护条件下养护28d后进 行试验,试验值取结果平均值,以确保数据真实可靠.

采用位移控制下的静力加载模式进行加载.为 获得稳定的加载数据,加载前对试件进行预压,预压 后以5×10⁻⁴ mm/s的加载速率进行试验.荷载(P) 及试件竖向位移均由疲劳试验机的内置传感器采 集;裂缝张口位移(CMOD)通过夹式引伸计采集;应 变由在裂缝尖端上部对称布置的一系列应变片和8 通道IMC应变采集仪采集,应变片布置见图2.

表 4 混凝土配合比及基本力学性能 Table 4 Mix proportions and mechanical properties of concretes

	Mix proportion/(kg \cdot m ⁻³)										28 d	28 d
Specimen No.	Cement	Fly ash	River sand	Water	NCA	RCA	NSL	NSP	NCP	Water reducing agent	compressive strength/ MPa	splitting tensile strength/ MPa
NC	273.00	117.000	616.50	164.000	1 250.00	0	0	0	0	4.91	42.36	5.16
RAC50	273.00	117.00	616.50	164.00	625.00	625.00	0	0	0	5.46	43.27	4.78
RAC100	273.00	117.00	616.50	164.00	0	1 250.00	0	0	0	6.01	45.08	4.57
NSL0.5	272.00	117.00	616.50	161.00	0	1 250.00	4.70	0	0	8.58	47.63	6.10
NSL1.0	270.00	117.00	616.50	158.00	0	1 250.00	9.00	0	0	9.75	48.36	5.73
NSL1.5	269.00	117.00	616.50	154.00	0	1 250.00	13.70	0	0	10.53	43.68	5.25
NSP0.5	272.00	117.00	616.50	164.00	0	1 250.00	0	1.40	0	8.97	47.35	5.72
NSP1.0	270.00	117.00	616.50	164.00	0	1 250.00	0	2.70	0	9.36	45.22	5.40
NSP1.5	269.00	117.00	616.50	164.00	0	1 250.00	0	4.10	0	10.14	43.52	5.11
NCP1.0	270.00	117.00	616.50	164.00	0	1 250.00	0	0	2.70	9.36	44.96	6.00
NCP2.0	268.00	117.00	616.50	164.00	0	1 250.00	0	0	5.50	10.14	47.53	5.57
NCP3.0	265.00	117.00	616.50	164.00	0	1 250.00	0	0	8.20	10.53	39.50	4.67

Note: NC represents normal concrete; RAC50 and RAC100 represents the replacement rate of recycled coarse aggregate is 50 %, 100%, respectively; NSL0.5, NSL1.0 and NSL1.5 represents the content of NSL is 0.5%, 1.0%, 1.5%, respectively; NSP0.5, NSP1.0 and NSP1.5 represents the content of NSP is 0.5%, 1.0%, 1.5%, respectively; NCP1.0 , NCP2.0 and NCP3.0 represents the content of NCP is 1.0%, 2.0%, 3.0%, respectively.

图 1 三点弯曲梁试验简图 Fig. 1 Sketch of three-point bending beam experiment (size:mm)

图 2 应变片布置图 Fig. 2 Layout of strain gauge (size:mm)

1.3 断裂参数与断裂能计算

采用非标准三点弯曲梁双K断裂参数计算方

法,并结合前人经验加以修正^[25-26],将试件自重纳入 考虑范围.混凝土试件裂缝扩展单位面积所需的能 量称为断裂能(*G*_t),是除双*K*断裂参数外,衡量混凝 土断裂性能的另一重要指标.双*K*断裂参数与断裂 能的具体计算公式见文献[27].本试验对其中的弹性 模量(*E*,GPa)计算式进行了修改,如式(1)所示:

$$E = \frac{1}{tc_{\rm i}} \left[3.70 + 32.60 \tan^2 \left(\frac{\pi}{2} \cdot \frac{a_0 + h_0}{h + h_0} \right) \right] \quad (1)$$

式中:h₀为夹式引伸计刀口薄钢板厚度,m;c_i为初始 柔度,对P-CMOD曲线上升段进行线性拟合,得到上 升段的斜率即为c_i.

1.4 纳米压痕试验

试验选取单颗粒型圆润且有明显老砂浆附着的 再生骨料,浇筑边长为30mm的正方体小型试件.试 件脱模养护至28d后,先将其切割成边长为15mm 的正方体试样,再镶嵌、打磨抛光,用于纳米压痕 试验.

将 RAC 中的老骨料-老砂浆界面过渡区记为 ITZ₁,老骨料-新砂浆界面过渡区记为 ITZ₂,老砂浆-新砂浆界面过渡区记为 ITZ₃.其中 ITZ₁和 ITZ₂采用 的压痕点阵为11 μm×11 μm 的正方形矩阵,需要说 明的是,为避免相邻压痕点距离过于接近,导致局部 区域变形,将相邻2个压痕点间距设置为10 μm(图3 (a)).由于老砂浆与新砂浆之间的界面过渡区较不明 显,需要横向扩大压痕点阵,以保证界面过渡区处于

压痕区域中间位置,故ITZ₃采用21 μ m×11 μ m的长 方形矩阵(图 3(b)).

试验采用载荷控制的加载模式.当压头压入待 测试样表面后,先以恒定速率加载10s至峰值荷载 2000μN,持荷5s后再以同样的速率卸载至0μN.将 所获得的矩阵模量数据通过Origin软件绘制出该压 痕区域的杨氏模量云图和分布图,并根据纳米压痕 试验中各相的压痕杨氏模量值(表5)^[28-31],分析纳米 SiO₂(纳米硅溶胶和纳米SiO₂粉末)和纳米CaCO₃粉 末对水泥水化过程和水化产物的影响.

表5 纳米压痕试验中各相的压痕杨氏模量值 Table 5 Young's modulus value of phase from nanoindentation^[28-31]

Type of phase	Pore	C-S-H	CH crystal	Unhydrated cement particles and other substances
Young's modulus/GPa	0-10	10-35	35-50	>50

2 结果和分析

2.1 基本力学性能

由表4可知:随着纳米材料掺量的增加,RAC 的抗压强度和劈裂抗拉强度呈现先增大后减小的趋势;当纳米硅溶胶掺量为0.5%、纳米SiO₂粉末掺量 为0.5%和纳米CaCO₃粉末掺量为1.0%时,3种纳 米材料对RAC 28d劈裂抗拉强度的提升效果最好, 分别较未掺纳米材料的RAC100组试件提高了 33.5%、25.2%及31.3%;1.0%纳米硅溶胶、0.5%纳 米SiO₂粉末和1.0%纳米CaCO₃粉末对RAC 28d 抗压强度的提升效果最好,分别为RAC100组试件 的107.2%、105.0%及105.4%;但掺量为1.5%纳米 硅溶胶、1.5%纳米SiO₂粉末及3.0%纳米CaCO₃粉 末使RAC 28d抗压强度有所下降,为RAC100组试 件的96.8%、96.5%、87.6%.由此可见,掺量合适的 纳米材料对RAC的劈裂抗拉强度和抗压强度有积极影响.

2.2 双K断裂参数与断裂能

图 4 为 RAC100 组试件的荷载-应变(P- ϵ)曲线、 荷载-挠度曲线(P- δ)与荷载-裂缝张口位移 (P-CMOD)曲线,图中RAC100-X表示第X根试件. 由以上曲线得到RAC100组试件的起裂荷载(P_{ini})、 最大荷载(P_{max})和裂缝端部张口位移临界值 (CMOD_c)^[32].各试件的断裂试验结果如表6所示.其 中CV为各试验组变异系数,能够反映试验组的离散 程度; a_c 为有效裂缝长度.

由表 6 可见:RAC 的断裂韧度和断裂能(G_f)随着再生粗骨料取代率的增加而下降,当再生粗骨料取代率分别为 50% 和 100% 时,起裂韧度(K_{ic})分别下降 5.9%、15.6%,失稳韧度(K_{ic})分别下降 11.8%、15.5%,断裂能(G_f)分别下降 18.7% 和 23.6%.可见再生骨料内部缺陷不仅加速混凝土内部的裂纹开展,并且总体趋于耗费低能量就可达到失稳状态,从而导致 RAC 双 K 断裂韧度与断裂能下降.

由表 6 还可见:(1)纳米材料对 RAC 起裂韧度 ($K_{\rm IC}$)的提升效果显著,呈现先提高后降低的趋势; 1.0%纳米硅溶胶、0.5%纳米 SiO₂粉末与 2.0%纳米 CaCO₃粉末对 RAC 起裂韧度($K_{\rm IC}$)的提升效果最佳, 分别提高 59.5%、55.2%及 53.9%.(2)纳米材料对 RAC 失稳韧度($K_{\rm IC}$)与断裂能(G_i)的影响也呈现先 提高后降低的趋势——1.0%纳米硅溶胶、0.5%纳米 SiO₂粉末、2.0%纳米 CaCO₃粉末对失稳韧度($K_{\rm IC}$)与 断裂能(G_i)的提升效果最佳,失稳韧度($K_{\rm IC}$)与 断裂能(G_i)的提升效果最佳,失稳韧度($K_{\rm IC}$)分别为 RAC100组试件的 106.1%、107.2%、109.7%,断裂 能(G_i)分别为 RAC100组试件的 104.2%、107.3%、 109.7%,但掺量为 1.5%纳米硅溶胶、1.5%纳米SiO₂ 粉末、3.0%纳米 CaCO₃粉末对 RAC 失稳韧度($K_{\rm IC}$) 与断裂能(G_i)均产生不利影响.由此可见,适量的纳 米 SiO₂与纳米 CaCO₃粉末对 RAC 断裂性能有增强

图 4 RAC100 组试件的 $P-\varepsilon$ 、 $P-\delta$ 和 P-CMOD curve 曲线 Fig. 4 $P-\varepsilon$, $P-\delta$, P-CMOD curve of RAC100 specimens

表 6 RAC试件双K断裂参数及断裂能 Table 6 Double-K fracture parameters and fracture energy of RAC specimens

Specimen No.	$P_{\rm ini}/{\rm kN}$	$P_{\rm max}/{\rm kN}$	<i>E</i> /GPa	$\text{CMOD}_c/\mu m$	$a_{\rm c}/{\rm m}$	$K_{ m IC}^{ m ini}/(m MPaullet m^{1/2})$	$\mathop{\mathrm{CV}}_{K^{\mathrm{ini}}_{\mathrm{IC}}}$ of	$K_{ m IC}^{ m un}/(m MPaullet m^{1/2})$	$\mathop{\rm CV}_{\mathop{\rm KC}^{\mathop{\rm un}}}$	$G_{\mathrm{f}}/(\mathrm{N} \cdot \mathrm{m}^{-1})$
NC	1.52	5.78	33.25	69.62	0.115	0.215	0.046	1.332	0.028	187.44
RAC50	1.43	5.61	31.63	60.42	0.110	0.202	0.054	1.175	0.028	152.37
RAC100	1.27	5.45	30.40	59.72	0.109	0.181	0.056	1.126	0.037	143.16
NSL0.5	1.79	6.31	25.41	65.28	0.100	0.250	0.062	1.132	0.091	141.67
NSL1.0	2.09	6.51	28.01	63.62	0.102	0.289	0.045	1.195	0.046	149.18
NSL1.5	1.71	5.82	22.34	77.16	0.104	0.238	0.075	1.117	0.069	142.65
NSP0.5	2.04	6.47	25.41	71.55	0.103	0.281	0.043	1.207	0.029	155.02
NSP1.0	1.90	6.43	24.44	70.28	0.101	0.264	0.050	1.159	0.055	142.78
NSP1.5	1.42	5.46	19.11	82.97	0.104	0.200	0.042	1.040	0.075	124.36
NCP1.0	1.83	5.86	27.42	64.22	0.105	0.255	0.087	1.139	0.040	144.30
NCP2.0	2.01	6.35	29.84	64.39	0.105	0.279	0.054	1.235	0.110	157.00
NCP3.0	1.62	6.04	29.80	64.87	0.107	0.228	0.047	1.218	0.088	138.69

效果.高掺量的纳米材料会产生团聚现象^[33],该现象 严重时可使试件内部缺陷增多,抵抗裂缝扩展的能 力减弱,最终导致试件断裂能(*G*_f)下降.文献[16, 19,21]也发现纳米材料掺量对混凝土性能的影响存 在先提高后降低的趋势,同时纳米 SiO₂粉末的最佳 掺量低于纳米硅溶胶,说明纳米 SiO₂的分散状态影 响改性效果.

2.3 试件破坏形态

试件预制裂缝上方断裂截面的破坏形态见图5. 由图5可见,掺入纳米材料后,断裂试件断裂面出现 了更多裂缝贯通再生骨料的情况.因为纳米材料的 填充效应与活性效应改善了RAC的界面过渡区,提 高了界面微观结构的致密程度^[34],具有更强的抵抗 裂缝开展的能力,使得裂缝发展通过骨料内部的现 象增加.

2.4 界面过渡区的纳米压痕分析

图 6 为 RAC 试件典型界面过渡区的压痕点阵 杨氏模量分布云图.将压痕区域内每个压痕点的杨 氏模量值进行统计分析,可得不同纳米材料掺量下 各试验组3种界面过渡区的界面特征参数,如表7 所示.由表7可知,纳米材料的掺入对ITZ₁影响不 大,但可以提高ITZ₂与ITZ₃中的C-S-H凝胶含量, 减少孔隙和CH晶体含量,从而提高界面密实 程度.

图 7 为掺入不同纳米材料的 RAC 界面过渡区的 杨氏模量概率分布.

由表7和图7(a)~(c)可见:(1)掺入纳米材料后, ITZ₁界面宽度几乎没有变化,各试件的模量均值仍在 23 GPa附近,未出现明显增强效果.(2)掺入纳米材料 前后ITZ₁界面的各区间模量值(表5)出现的概率较为 相近,ITZ₁界面存在较多C-S-H凝胶(10~35 GPa),而 孔隙(0~10 GPa)和CH晶体(35~50 GPa)含量较少, 界面密实程度较高,在不施加外力作用时,纳米颗粒 难以进入ITZ₁界面内部发挥作用,所以掺入纳米材 料后ITZ₁的压痕模量变化不大.

由表7和图7(d)~(f)可见:(1)掺入纳米材料后

图 5 试件预制裂缝上方断裂面破坏形态 Fig. 5 Failure forms above the crack of specimens

Fig. 6 Distribution cloudy map of typical interface indentation lattice Young's modulus of RAC specimens

表 7 不同纳米材料掺量下各界面的界面特征参数 Table 7 Characteristic parameters of various interface with different nano-material content

Specimen No.	Thickness of $ITZ_1/\mu m$	Mean Young's modulus of $\mathrm{ITZ}_1/\mathrm{GPa}$	Thickness of ITZ ₂ /μm	Mean Young's modulus of ITZ ₂ /GPa	Thickness of $\mathrm{ITZ}_3/\mu\mathrm{m}$	Mean Young's modulus of ITZ ₃ /GPa
RAC100	40	23.09	60	27.34	50	26.68
NSL0.5	40	23.70	60	27.52	40	30.38
NSL1.0	40	22.48	60	28.88	40	25.34
NSL1.5	40	23.59	60	34.29	40	28.61
NSP0.5	40	23.09	60	25.72	40	26.57
NSP1.0	45	22.55	55	26.82	40	25.32
NSP1.5	40	22.98	60	35.36	45	29.55
NCP1.0	35	23.70	60	28.56	45	31.21
NCP2.0	40	22.60	55	27.65	40	32.32
NCP3.0	40	22.25	60	29.93	45	24.02

ITZ₂界面的模量均值发生较大改变,但界面厚度几 乎没有变化.(2)RAC100组试件的ITZ₂界面模量处 于孔隙和CH晶体模量范围的概率较大,但掺入纳米 材料后孔隙和CH晶体大量减少,同时,纳米SiO₂和 纳米CaCO₃粉末使C-S-H凝胶概率大幅度提高.这 是因为掺入纳米SiO₂和纳米CaCO₃粉末后,纳米 SiO₂的火山灰效应和两者的晶核效应改善了CH晶 体的富集和排列,促进生成致密程度更高的C-S-H, 减少了 CH 晶体含量;同时水化产物和富余的纳米颗 粒具有填充作用,导致界面内部孔隙数量进一步减 少.但当纳米 SiO₂掺量达到 1.5%、纳米 CaCO₃粉末 掺量达到 3.0% 后,因团聚原因,不能起到上述作用.

由表7和图7(g)~(i)可见:纳米SiO₂和纳米 CaCO₃粉末对ITZ₃界面模量的影响与ITZ₂相似,但 当纳米材料掺量较大时,模量分布图中C-S-H凝胶 部分较为丰满,同时CH晶体含量显著降低.可见对于 新、老砂浆之间的ITZ₃界面,适当提高纳米材料掺量 有助于C-S-H凝胶的生成;此外,界面厚度由50 µm 降低到40~45 µm.这可能是由于老砂浆具有一定的 吸水率,在少部分水分进入到老砂浆孔隙内部时,纳 米颗粒富集于老砂浆外表面,造成局部水灰比发生 变化,同时,由于纳米SiO₂和纳米CaCO₃粉末能够改 善并细化尺寸较大且定向排列的CH晶体,由晶核效 应生成致密的网状水化产物,使界面过渡区厚度减 小、模量发生变化. 此外,由表7中的ITZ₂与ITZ₃各模量试验结果可知,与掺入纳米CaCO₃粉末相比,掺入纳米SiO₂更 有利于减少CH晶体含量和孔隙率.

根据 2.3 中试件预制裂缝上方断裂面破坏形态 可以看出,掺入纳米材料后,RAC断裂面中完整裸 露的再生骨料数量减少,再生骨料断面和老砂浆断 面数量增多.这可能是适量纳米 SiO₂和纳米 CaCO₃ 粉末改善了 ITZ₂和 ITZ₃界面的致密程度,提高了 界面黏结强度,增加了 2种界面破坏时所需要的能 量,使得裂缝扩展更倾向于贯穿再生骨料或其表面 附着的老砂浆.当该情况出现概率增加时,裂缝扩 展至试件破坏时所需的总能量相应增加,最终表现 为三点弯曲梁试件的起裂荷载、失稳荷载和断裂能 增加.受起裂荷载和失稳荷载变化的影响,起裂韧 度和失稳韧度也将获得相应的提高.但过多纳米 SiO₂和纳米 CaCO₃粉末易产生团聚现象,削弱改善 效果.

3 结论

(1)适当掺量的纳米 SiO₂和纳米 CaCO₃粉末能 够有效提高 RAC 的抗压强度与劈裂抗拉强度.

(2)RAC的起裂韧度、失稳韧度和断裂能随着再 生粗骨料取代率的增大而减小.掺入适量的纳米 SiO₂和纳米CaCO₃粉末能够提高RAC的双K断裂 韧度和断裂能.其中,1.0%纳米硅溶胶、0.5%纳米 SiO₂粉末、2.0%纳米CaCO₃粉末提升效果最佳.掺 入纳米材料可使RAC的起裂韧度超越普通混凝土, 但失稳韧度仍达不到普通混凝土的标准.

(3)掺入纳米 SiO₂和纳米 CaCO₃粉末可将 RAC 内部老砂浆-新砂浆界面厚度减小5~10 μm,对老骨 料-老砂浆界面内部物质含量几乎无影响,而在掺量 适宜的情况下可提高老骨料-新砂浆和老砂浆-新砂 浆界面内 C-S-H凝胶含量,减少 CH 晶体含量、孔隙 率和未水化水泥颗粒数量.掺入纳米 SiO₂试验组的 老骨料-新砂浆和老砂浆-新砂浆界面内的 CH 晶体 含量和孔隙率减少幅度大于掺入纳米 CaCO₃粉末的 试验组.

参考文献:

- TANG Q, XIAO P, KOU C J, et al. Physical, chemical and interfacial properties of modified recycled concrete aggregates for asphalt mixtures: A review [J]. Construction and Building Materials, 2021, 312:125357.
- [2] GUO Z, TU A, CHEN C, et al. Mechanical properties, durability, and life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates[J]. Journal of Cleaner Production, 2018, 199:136-149.
- [3] POURANIAN M R, SHISHEHBOR M. Sustainability assessment of green asphalt mixtures: A review [J]. Environments, 2019, 6(6):73.
- [4] 罗素蓉,承少坤,肖建庄,等.纳米改性再生骨料混凝土单轴受 压疲劳性能[J].工程力学,2021,38(10):134-144.
 LUO Surong, CHENG Shaokun, XIAO Jianzhuang, et al. Fatigue behavior of nano-modified recycled aggregate concrete under uniaxial compression[J]. Engineering Mechanics, 2021, 38(10):134-144. (in Chinese)
- [5] 高嵩,宫尧尧,班顺莉,等.离子侵蚀对再生混凝土多重界面 区微观形貌影响[J].硅酸盐通报,2020,39(8):2567-2573.
 GAO Song, GONG Yaoyao, BAN Shunli, et al. Effect of ion erosion on microstructure of multiple interface zone of recycled concrete[J]. Bulletin of the Chinese Ceramic Society, 2020,39 (8):2567-2573. (in Chinese)
- [6] 曹瑜斌,李秋义,王忠星,等.显微硬度分析在再生混凝土多 重界面结构中的应用[J]. 硅酸盐通报, 2017, 36(8):2678-2682.
 CAO Yubin, LI Qiuyi, WANG Zhongxing, et al. Reconstruction

technique and application of multi interface structure model of recycled concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8):2678-2682. (in Chinese)

- [7] FALLAHNEJAD H, DAVOODI M R, NIKBIN I M. The influence of aging on the fracture characteristics of recycled aggregate concrete through three methods [J]. Structural Concrete, 2021, 22(Suppl 1):E74-E93.
- [8] GHORBEL E, WARDEH G. Influence of recycled coarse aggregates incorporation on the fracture properties of concrete[J]. Construction and Building Materials, 2017, 154(15):51-60.
- [9] LI A, XIAO J Z, ZHANG Y M, et al. Fracture behavior of recycled aggregate concrete under three-point bending[J]. Cement and Concrete Composites, 2019, 104:103353.
- [10] ZHANG H R, ZHAO Y X, MENG T, et al. Surface treatment on recycled coarse aggregates with nanomaterials[J]. Journal of Materials in Civil Engineering, 2016, 28(2):04015094.
- [11] ZENG W, ZHAO Y, ZHENG H, et al. Improvement in corrosion resistance of recycled aggregate concrete by nano silica suspension modification on recycled aggregates[J]. Cement and Concrete Composites, 2019, 106:103476.
- [12] LONG L, XUAN D, SOJOBI A O, et al. Development of nano-silica treatment methods to enhance recycled aggregate concrete[J]. Cement and Concrete Composites, 2021, 118(6): 103963.
- [13] 张鹏, 亢洛宜, 郭进军, 等. 纳米 SiO₂和 PVA 纤维增强水泥基 复合材料的断裂性能[J]. 建筑材料学报, 2021, 24(5):908-915.
 ZHANG Peng, KANG Luoyi, GUO Jinjun, et al. Fracture properties of nano-SiO₂ and PVA fiber reinforced cementitious composites [J]. Journal of Building Materials, 2021, 25 (5): 908-915. (in Chinese)
- [14] MUKHARJEE B B, BARAI S V. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste[J]. Waste Management &. Research, 2015, 33(6):515-523.
- [15] AGARWAL A, BHUSNUR S, PRIYA T S. Experimental investigation on recycled aggregate with laboratory concrete waste and nano-silica[J]. Materials Today: Proceedings, 2020, 22(4): 1433-1442.
- [16] 张鹏, 王磊, 王娟, 等. 纳米 CaCO₃和 PVA 纤维增强混凝土工 作性及力学性能的研究[J]. 混凝土与水泥制品, 2020(3):42-45.
 ZHANG Peng, WANG Lei, WANG Juan, et al. Study on the workability and mechanical properties of nano-CaCO₃ and PVA fiber reinforced concrete [J]. China Concrete and Cement Products, 2020(3):42-45. (in Chinese)
- [17] 张鹏,杨永辉,亢洛宜,等.纳米碳酸钙和聚乙烯醇纤维增强 混凝土抗弯拉性能[J].科学技术与工程,2020,20(11): 4507-4511.
 ZHANG Peng, YANG Yonghui, KANG Luoyi, et al. Flexural properties of nano-CaCO₃ and PVA fiber reinforced concrete[J]. Science Technology and Engineering, 2020, 20(11):4507-4511. (in Chinese)
- [18] LI W, LUO Z, LONG C, et al. Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact

loading[J]. Materials & Design, 2016, 112(15):58-66.

- [19] 罗素蓉,白俊杰.纳米改性对再生混凝土双K断裂参数的影响
 [J].水利学报,2018,49(6):670-677.
 LUO Surong, BAI Junjie. Effect of nano-modification on double-K fracture parameters of recycled concrete[J]. Journal of Hydraulic Engineering, 2018, 49(6):670-677. (in Chinese)
- [20] 中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料:GB/ T 25177—2010[S]. 北京:中国标准出版社, 2011.
 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete:GB/T 25177—2010[S]. Beijing:Standards Press of China, 2011. (in Chinese)
- [21] 田竞,苏璇,吴鹏,等. 纳米CaCO₃对混凝土抗冲磨性能影响试 验研究[J]. 混凝土与水泥制品, 2020(6):9-12.
 TIAN Jing, SU Jun, WU Peng, et al. Experimental research on abrasion resistance of concrete mixed with nano-CaCO₃[J]. China Concrete and Cement Products, 2020(6):9-12. (in Chinese)
- [22] 魏荟荟.纳米CaCO₃对水泥基材料的影响及作用机理研究[D]. 哈尔滨:哈尔滨工业大学,2013.
 WEI Huihui. Study on the effect and mechanism of nano CaCO₃ on cement-based materials [D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
- [23] 闫玉红,谢威章,王子颜,等.纳米CaCO₃对混凝土抗压和劈 拉强度影响试验研究[J].建材技术与应用,2019(5):1-5. YAN Yuhong, XIE Weizhang, WANG Ziyan, et al. Experimental study on effect of nano-CaCO₃ on compressive strength and splitting tensile strength of concrete[J]. Research &. Application of Building Materials, 2019(5):1-5. (in Chinese)
- [24] XU S, LI Q, WU Y, et al. RILEM standard: Testing methods for determination of the double-K criterion for crack propagation in concrete using wedge-splitting tests and three-point bending beam tests, recommendation of RILEM TC265-TDK [J]. Materials and Structures, 2021, 54(6):1-11.
- [25] 吴智敏,徐世烺,丁一宁,等.砼非标准三点弯曲梁试件双K断裂参数[J].中国工程科学,2001,3(4):76-81.
 WU Zhimin, XU Shilang, DING Yining, et al. The double-K fracture parameter of concrete for non-standard three point bending beam specimens[J]. Engineering Science, 2001, 3(4):76-81. (in Chinese)
- [26] GUINEA G V, PASTOR J Y, PLANAS J, et al. Stress intensity factor, compliance and CMOD for a general three-point

bend beam[J]. International Journal of Fracture, 1998, 89(2): 103-116.

- [27] 吴恺云,罗素蓉,郑建岚.基于非接触式观测技术的再生骨料 混凝土断裂性能分析[J].工程力学,2022,39(3):147-157.
 WU Kaiyun, LUO Surong, ZHENG Jianlan. Fracture propertie analysis of recycled aggregate concrete based on digital image correlation technique [J]. Engineering Mechanics, 2022, 39(3): 147-157. (in Chinese)
- [28] 徐晶,王彬彬,赵思晨.纳米改性混凝土界面过渡区的多尺度 表征[J].建筑材料学报,2017,20(1):7-11.
 XU Jing, WANG Binbin, ZHAO sichen. Multi-scale characterization of interfacial transition zone in nano-modified concrete[J]. Journal of Building Materials, 2017, 20(1):7-11. (in Chinese)
- [29] ZHAO S J, SUN W. Nano-mechanical behavior of a green ultra-high performance concrete[J]. Construction and Building Materials, 2014, 63:150-160.
- [30] LI W, XIAO J, SUN Z, et al. Interfacial transition zones in recycled aggregate concrete with different mixing approaches[J]. Construction and Building Materials, 2012, 35:1045-1055.
- [31] LIURG, HANFH, YANPY. Characteristics of two types of C-S-H gel in hardened complex binder pastes blended with slag
 [J]. Science China Technological Sciences, 2013, 56(6): 1395-1402.
- [32] 罗素蓉,白俊杰.纳米改性对再生混凝土双K断裂参数的影响
 [J].水利学报,2018,49(6):670-677.
 LUO Surong, BAI Junjie. Effect of nano-modification on double-K fracture parameters of recycled concrete[J]. Journal of Hydraulic Engineering, 2018, 49(6):670-677. (in Chinese)
- [33] 孔德玉,杜祥飞,杨杨,等.纳米二氧化硅团聚特性对水泥水 化硬化性能的影响[J].硅酸盐学报,2012,40(11):1599-1606.
 KONG Deyu, DU Xiangfei, YANG Yang, et al. Effect of nano-silica agglomeration on hydration and hardening of cement
 [J]. Journal of the Chinese Ceramic Society, 2012, 40(11): 1599-1606. (in Chinese)
- [34] 高国华,黄卫东,李传海.纳米SiO₂增强骨料裹浆对混凝土抗 冻性能的改善[J].建筑材料学报,2021,24(1):45-53.
 GAO Guohua, HUANG Weidong, LI Chuanhai. Improvement of frost resistance for concrete by coating aggregate with nano SiO₂
 [J]. Journal of Building Materials, 2021, 24(1):45-53. (in Chinese)