文章编号:1007-9629(2024)01-0084-06

废弃橡胶粉对水泥稳定碎石抗疲劳性能的影响

王可良^{1,*}, 李淑媛^{1,2}, 范圣伟¹, 黄建政³

(1.山东交通学院交通工建工程学院,山东济南 250357; 2.菏泽城建工程发展集团有限公司,山东 菏泽 274000; 3.青岛市即墨区水利局,山东 青岛 266200)

摘要:为了消除水泥稳定碎石基层因疲劳损伤产生的裂缝,采用三分点加载方法系统研究了不同废 弃橡胶粉掺量下水泥稳定碎石的疲劳性能,运用三点弯曲梁法表征了掺加废弃橡胶粉的水泥稳定碎 石抗疲劳机理.结果表明:掺加10、20 kg/m³废弃橡胶粉的水泥稳定碎石疲劳寿命优于基准组水泥稳 定碎石;当废弃橡胶粉掺量为10、20 kg/m³时水泥稳定碎石的起裂韧度是基准组的1.49、2.58倍,失 稳韧度是基准组的1.30、2.21倍,断裂能也较大,抗疲劳性能显著;当废弃橡胶粉掺量为30 kg/m³时, 水泥稳定碎石的抗疲劳性能并没有提高,这可能与废弃橡胶粉掺量过大导致弯拉强度降低有关. 关键词:水泥稳定碎石;废弃橡胶粉;疲劳寿命;疲劳方程;断裂韧度;断裂能 中图分类号:U416.216 文献标志码:A doi:10.3969/j.issn.1007-9629.2024.01.011

Effect of Waste Rubber Powder on Fatigue Performance of Cement Stabilized Gravel

WANG Keliang^{1,*}, LI Shuyuan^{1,2}, FAN Shengwei¹, HUANG Jianzheng³

(1. College of Civil and Transportation Engineering, Shandong Jiaotong University, Jinan 250357, China; 2. Heze Urban Construction Engineering Development Group Co., Ltd., Heze 274000, China; 3. Qingdao Jimo District Water Conservancy Bureau, Qingdao 266200, China)

Abstract: In order to eliminate fatigue crack, the fatigue performance of cement stabilized gravel with different waste rubber powder content was studied by three-point loading method. Fatigue mechanism of cement stabilized gravel with waste rubber powder was characterized by three-point bending beam method. The results show that fatigue lives of cement stabilized gravels with rubber powder content of 10, 20 kg/m³ are better than that of reference cement stabilized gravel. Cracking toughnesses of cement stabilized gravels with rubber powder content of 10, 20 kg/m³ are 1.49, 2.58 times that of reference respectively. And instability toughnesses of cement stabilized gravels with rubber powder content of 10, 20 kg/m³ are 1.30, 2.21 times that of reference. So fatigue resistances of cement stabilized gravels with rubber powder content of 10, 20 kg/m³ are fatigue performance of cement stabilized gravel with rubber powder content of 30 kg/m³ does not increase because that its bending tensile strength is low with increasing rubber powder content.

Key words: cement stabilized gravel; waste rubber powder; fatigue life; fatigue equation; fracture toughness; fracture energy

水泥稳定碎石具有强度高、板体性好、经济性好等优点,是中国使用最广泛的半刚性基层材料.据统计,中国高速公路基层90%采用的是水泥稳定碎

石^[1].但在实际应用中,水泥稳定碎石会发生疲劳损伤,易产生反射裂缝^[1-2],导致沥青(或水泥)路面开裂,这已成为行业内亟待解决的技术难题.为解决上

收稿日期:2022-11-15;修订日期:2023-05-17

基金项目:山东省科技发展计划(2014GSF116021)

第一作者(通讯作者):王可良(1972-),男,山东梁山人,山东交通学院教授,硕士生导师,博士.E-mail:keliangwang@126.com

述问题,国内外开展了许多相关研究.周浩等^[2]发 现提高骨架密实型级配水泥稳定碎石中的水泥含 量,能使其抗压强度提高,疲劳性能降低.研究表 明^[34],纤维可提高水泥稳定碎石的抗疲劳性能;在 相同应力水平下,聚丙烯纤维水泥稳定碎石的抗疲 劳性能较未掺纤维时提高了1~3倍.但纤维在拌 和过程中易成团,很难控制^[5].废弃橡胶粉可提高 混凝土的抗疲劳性能^[68],但将废弃橡胶粉运用在 水泥稳定碎石材料中的研究较少.水泥稳定碎石作 为基层材料在实际工作状态下所承受的循环荷载 是变化的,表现出不同的疲劳规律.因此,系统开展 掺加废弃橡胶粉的水泥稳定碎石的疲劳性能研究, 揭示其抗疲劳机理,对抑制水泥稳定碎石基层开裂 具有重要意义. 针对水泥稳定碎石基层因疲劳损伤易产生裂缝 的问题,系统研究了不同废弃橡胶粉掺量对水泥稳 定碎石的无侧限抗压强度、弯拉强度、疲劳强度以及 断裂韧度的影响及其变化规律,揭示了废弃橡胶粉 能够提升水泥稳定碎石的抗疲劳性能机理,确定了 废弃橡胶粉最佳掺量.

1 试验

1.1 原材料

水泥采用山水 P·O 42.5水泥,山东淄博产;粗集 料采用 20.0~31.5、10.0~20.0、5.0~10.0 mm 不同级 配碎石;细集料采用粒径为 2.0~5.0 mm 的石屑,山 东沂源产;废弃橡胶粉粒径为 0.6、0.8 mm (40、60 目),山东邹平产.原材料主要性能指标见表 1~3.

表1 水泥的主要性能指标

Fineness/		Setting time/min		3 d strength/MPa		28 d strength/MPa	
$(m^2 \cdot kg^{-1})$	Stability(boiling method)	Initial	Final	Flexural	Compressive	Flexural	Compress
347	Qualified	176	247	5.4	23.3	7.6	46.2
	Tab	表 2 集料 le 2 Main pe	的主要性俞 rformance	と指标 of aggregates			
Parameter —			C	Fravel			Stone chip
		20.0-31.5 mm		0-20.0 mm	5.0-10.0 mm		2.0-5.0 mm
w(flaky p	article)/%	4.8		4.5	4.9		
Crushing valu	e(by mass)/ %			18.4			
Apparent density/(kg \cdot m ⁻³)		2 670		2 670 2 670			2 670
Bulk densit	$tv/(kg \cdot m^{-3})$	1 560		1 522	1 464	1 378	

太 3 反升像及初的工女任能指称 Table 3 Main performance of rubber powder							
Apparent density/ $(kg \cdot m^{-3})$	w(rubber hydrocarbon)/ %	w(carbon black)/%	w(natural gum)/ %				
627.0	46.2	19.3	32.1				

1.2 试件制备

试验所用集料各项技术指标均满足JTG E42—2005《公路工程集料试验规程》要求.按照JTG/T F20—2015《公路路面基层施工技术细则》,采用四分法对集料进行筛分试验.在筛分结果的基础上,选取规范规定的级配中值,优化集料级配,确定各集料所占比例.

根据JTG E51—2009《公路工程无机结合料稳 定材料试验规程》中无机结合料稳定材料击实试验 方法(T0804—1994),设定5种水泥剂量¹⁾(5%、6%、 7%、8%和9%),采用CSK-VI多功能电动击实仪进 行击实试验.根据击实试验结果,绘制不同水泥剂量 下水泥稳定碎石的击实曲线,确定其最大干密度及 最佳含水量.

根据无机结合料稳定材料试件(圆形)制备方法 (T0843—2009),结合水泥稳定碎石的最大干密度及 最佳含水量,成型不同水泥剂量下的圆形试件,每组 配合比下成型3个试件,脱模后标准养护至7d龄期. 根据无机结合料稳定材料无侧限抗压强度试验方法 (T0805—1994),采用MTS电液伺服试验机测试试 件的7d无侧限抗压强度,以此确定水泥稳定碎石的 最佳水泥剂量.再采用橡胶粉等体积取代配合比中 石屑的方法,即可获得不同橡胶粉掺量的水泥稳定 碎石配合比.

根据无机结合料稳定材料试件(梁式)制备方法

¹⁾文中涉及的剂量、含水量等除特别说明外均为质量分数.

(T0844—2009),按设计配合比称量原材料,在 YA-2000B型试验压力机下挤压成型尺寸为 100 mm×100 mm×400 mm的中梁试件,维持压力 5 min,每组配合比下成型12个试件,标准养护至28 d 龄期.其中3个试件用于弯拉强度测试,9个试件用于 疲劳试验,结果取平均值.

1.3 疲劳试验

根据无机结合料稳定材料疲劳试验方法 (T0856—2009),采用三分点加载方法,首先控制加 载速率50 mm/min,记录试件断裂时的最大荷载,测 试试件的弯拉强度,计算平均值,取其1/10为疲劳试 验的特征值;然后设置4种应力水平(k,分别为0.6、 0.7、0.8和0.9),计算不同应力水平下试件的最大荷 载及最小荷载;最后施加疲劳荷载连续波,荷载频率 f=10 Hz,荷载波形如图1所示,其中 P_{max} 为最大荷 载; P_{min} 为最小荷载, $P_{min}=0.02 \times P_{max}; P_0$ 为荷载振 幅, $P_0 = P_{max} - P_{min}; T_0$ 为荷载周期, $T_0 = \frac{1}{f}$.加载直 至试件破坏,记录荷载作用的次数,即疲劳寿命*N*.

1.4 断裂韧度测试

根据 DL/T 5332—2005《水工混凝土断裂试验规程》中的三点弯曲梁试验方法,成型断裂韧度测试试件.试件采用钢模挤压成型,试件尺寸为:长L=1000 mm,高 H=200 mm,宽 B=120 mm,跨度 S=800 mm,跨高比 S/H=4.在挤压成型水泥稳定碎石之前,将厚度为2 mm的钢板两面涂上脱模剂,再预埋于试模内,待初凝3 h后,拔出钢板,生成预制裂缝,初始裂缝长 a₀=80 mm,初始缝高比 a₀/H=0.4.每组成型5个试件,标准养护至28 d龄期再进行断裂

韧度测试,结果取平均值.

测试时将试件置于可滚动的支座上,裂缝朝下, 在试件裂缝处安装夹式引伸计,在试件上方放置垫板,启动加载装置进行均匀加载,控制加载速率80~ 120 N/s,记录裂缝张口位移 CMOD 和载荷 P,直至 试件破坏.

2 结果与讨论

2.1 配合比

进行集料级配试验,确定集料级配组成为: 20.0~31.5、10.0~20.0、5.0~10.0 mm碎石和石屑, 其质量分数分别为45%、10%、15%和30%.

在该级配组成的基础上,进行击实试验,确定水 泥剂量为5%、6%、7%、8%和9%的混合料最大干 密度和最佳含水量,结果见表4.成型试件,养护7d, 测试不同水泥剂量下水泥稳定碎石的7d无侧限抗 压强度,结果也列于表4.

表4 不同水泥剂量下水泥稳定碎石的最大干密度、最佳含水量和7d无侧限抗压强度

Table 4 Maximum dry density, optimum water content and 7 d unconfined compressive strength of cement stabilized gravels with different cement contents

w(cement)/%	Maximum dry density/(g \cdot cm ⁻³)	Optimum water content(by mass)/%	7 d unconfined compressive strength/MPa
5	2.352	5.5	6.2
6	2.373	5.6	7.3
7	2.418	6.2	8.2
8	2.382	6.3	10.3
9	2.384	5.0	12.7

由表4可知,水泥稳定碎石的7d无侧限抗压 强度随着水泥剂量的增加而增大,当水泥剂量为 5%时,即可达到道路基层施工规范规定的无侧限 抗压强度(6 MPa).因此综合考虑性能和经济因 素,水泥稳定碎石的基准配合比中最佳水泥剂量 为5%.

结合前期研究成果[9-11],废弃橡胶粉粒径为0.6、

0.8 mm,且两者质量比为40:60时水泥混凝土的工作 性能、力学性能、变形性能和抗剪性能最优.因此,本 研究仍选择上述废弃橡胶粉及级配组成.将废弃橡 胶粉等体积取代石屑掺入到水泥稳定碎石中,废弃 橡胶粉掺量分别为0、10、20、30 kg/m³,对应试件记作 L-1、L-2、L-3、L-4,其中L-1为基准组.得到中梁试件 配合比见表5. Unit: kg/m⁴

表5 中梁试件配合比 Table 5 Mix proportion of middle beam specimens

				Grave			
Specimen	Cement	Stone chip	5.0- 10.0	10.0- 20.0	20.0-	Water	Rubber powder
			mm	mm	51.5 11111		
L-1	124	670	335	223	1 004	130	0
L-2	124	648	338	226	1 016	130	10
L-3	124	626	338	226	1 016	130	20
L-4	124	604	338	226	1 016	130	30

2.2 弯拉强度

按表5中配合比成型中梁试件,测试不同废弃橡 胶粉掺量下水泥稳定碎石的弯拉强度,计算平均值, 取其1/10为疲劳试验特征值.

可以得到,基准水泥稳定碎石的弯拉强度为 6.1 kN, 当橡胶粉掺量为10、20、30 kg/m³时, 水泥稳 定碎石的弯拉强度分别为5.9、5.4、4.5 kN.这主要是 橡胶粉与水泥石之间的弹性模量差异较大,界面过 渡区结构弱化,界面强度减小所致¹⁹.

2.3 疲劳强度

根据疲劳试验特征值,进行疲劳试验,得到不同 废弃橡胶粉掺量下水泥稳定碎石疲劳寿命,见表6.

由表6可知,不同废弃橡胶粉掺量下水泥稳定碎 石的疲劳寿命结果离散性较大.从能量的角度来分 析,疲劳损伤过程实质上是一种能量耗散的过程.其 随机性主要体现在材料结构内部及外部的随机性.材 料内部的随机性会导致材料及结构的弹性模量、断裂 韧性、弯拉强度等的不唯一性.因此,水泥稳定碎石内 部缺陷、孔结构分布,以及粗细集料的不均匀性,是造 成其疲劳寿命离散性较大的主要原因.另外,试件成 型过程中拌和物的均匀性、试件成型时施加的压力差 异,也在不同程度上影响着疲劳寿命的离散性.总体 上,水泥稳定碎石的疲劳寿命随应力水平增大而降低. 应力水平增大,循环加载在试件上的压力增大,造成 试件累积的损伤越来越大,疲劳寿命随之减少.

总体而言,废弃橡胶粉掺量为10、20 kg/m³的水 泥稳定碎石的疲劳寿命优于基准水泥稳定碎石,这 是由于废弃橡胶粉具有弹性,分布于水泥稳定碎石 中成为应力吸收点,可吸收分散部分循环荷载应力; 当废弃橡胶粉掺量为30 kg/m³时,水泥稳定碎石的 疲劳寿命并没有显著提高,这可能与废弃橡胶粉掺 量增加,水泥稳定碎石的弯拉强度降低有关.

2.4 疲劳方程

为进一步比较不同废弃橡胶粉掺量下水泥稳定 碎石材料的疲劳性能,回归得到疲劳方程:

表6 不同废弃橡胶粉掺量下水泥稳定碎石疲劳寿命 Table 6 Fatigue lives of cement stabilized gravels with different waste rubber powder contents

					Unit:times
Speaimon	Test				
Specifien	number	0.6	0.7	0.8	0.9
	N1	520 296	378 502	236 707	255 706
	N2	514 876	333 145	36 072	90 826
	N3	405 933	218 415	31 808	10 205
	N4	316 325	206 219	8 696	1 924
L-1	N5	167 823	16 390	3 092	1 790
	N6	163 816	1 403	1 805	1 783
	N7	37 695	666	1 240	1 562
	N8	22 423	241	214	839
	N9	19 682	200	139	178
	N1	769 364	355 379	308 481	240 487
	N2	592 023	333 586	106 403	165 406
	N3	561 529	117 505	101 087	4 204
	N4	376 934	93 069	22 086	4 082
L-2	N5	329 999	27 006	17 847	2 806
	N6	260 876	17 726	7 855	1 791
	N7	204 861	3 034	2 217	394
	N8	35 183	1 087	955	247
	N9	21 210	679		
	N1	711 252	600 028	376 934	31 408
	N2	622 231	401 129	187 076	31 187
	N3	616 760	296 917	134 342	4 0 3 6
	N4	404 648	109 581	53 569	1 039
L-3	N5	317 126	53 243	1 689	605
	N6	90 356	45 901	901	484
	N7	81 072	15 902	197	293
	N8	70 989	2 421	138	125
	N9				105
	N1	702 796	263 752	164 275	6 931
	N2	653 092	233 122	118 841	251
	N3	611 730	226 551	58 778	98
	N4	611 267	72 949	18 037	67
L-4	N5	487 294	67 361	4 364	49
	N6	316 126	67 361	1 835	29
	N7	218 304	48 376	559	12
	N8	78 528	11 812	143	11
	N9	615	3 764		

$$\lg N = a + bk \tag{1}$$

式中:a、b为回归系数.

根据表6中数据,以应力水平作为自变量x,以 疲劳寿命的对数值作为因变量 y,进行一元线性回 归分析,可得出当保证率为50%时,不同废弃橡胶 粉掺量下水泥稳定碎石的疲劳方程和相关参数,结 果见表 7. 其中, \bar{X} 、 \bar{Y} 分别表示均差;Lxx、Lyy、Lxy分别表示 x 的离均差平方和、y 的离均差平方和、x与y的离均差乘积和. 检验表7线性回归的效果,统计分析相关参数; 查*t*分布表,可得λ和Δ,其中λ代表临界值,Δ代表偏 差.计算不同保证率下的疲劳方程,见表8.

	表 7	不同废弃橡胶掺量的水泥稳定碎石疲劳方程和相关参数
Table 7	Parameters and fatig	e equation of cement stabilized gravel with different waste rubber powder contents

Specimen	\bar{X}	\bar{Y}	Lxx	Lxy	Lyy	а	b	Fatigue equation
L-1	0.744 1	4.3988	0.6362	-2.1213	35.7557	8.1198	-5.0006	y = -5.0006x + 8.1198
L-2	0.7544	4.2761	0.4268	-3.3417	53.7132	10.2796	-4.9565	y = -4.9565x + 10.2796
L-3	0.7543	3.9560	0.3658	-5.5720	96.7117	13.0567	-4.8079	y = -4.8079x + 13.0567
L-4	0.7500	4.1389	0.4500	-2.3970	51.444 1	8.1339	-4.3267	y = -4.3267x + 8.1339

表 8 不同保证率下橡胶水泥稳定碎石疲劳方程和方差分析

 Table 8
 Fatigue equation and analysis of cement stabilized gravel with different guarantee rates

Specimen	Deviation	Sum of squares	Degree of freedom	Standard deviation	Statistic F	Significance	Guarantee rate/%	λ	Δ	Fatigue equation						
	Regression	10.6077	1				99	2.457	2.2095	y = -5.0006x + 5.9136						
L-1	Surplus	25.1480	32	0.8865	13.4979	Highly	95	1.697	1.5261	y = -5.0006x + 6.5937						
	Sum	35.7557	33			significant	90	1.310	1.1780	y = -5.006x + 6.9418						
	Regression	25.5886	1				99	2.457	1.9290	y = -4.9565x + 7.9468						
L-2	Surplus	27.1246	34	0. 935 4 30. 387 3	30.3873	387.3 Highly	95	1.697	1.3323	y = -4.9565x + 8.6683						
	Sum	53.7132	35										Significant	90	1.310	1.0280
	Regression	76.9371	1				99	2.457	2.3328	y = -4.8079x + 11.1277						
L-3	Surplus	19.7747	31	0.7741	128.3872	Highly	95	1.697	1.6113	y = -4.8079x + 11.7244						
	Sum	96.7117	32			significant	90	1.310	1.2438	y = -4.8079x + 12.0287						
L-4	Regression	12.7682	1				99	2.457	2.6565	y = -4.3267x + 5.4774						
	Surplus	38.6759	34	1.0665	11.2245	Highly	95	1.697	1.8348	y = -4.3267x + 6.2991						
	Sum	51.444 1	35			Significant	90	1.310	1.4164	y = -4.3267x + 6.7175						

表8说明,疲劳方程的不同主要由回归系数a和b 决定.a为回归拟合曲线截距,表示疲劳曲线的位置高 低,a值越大,则疲劳曲线的位置越高,水泥稳定碎石抗 疲劳性能越好;b为曲线斜率,决定疲劳曲线的陡缓,b 值越大,则曲线越陡,说明应力的变化对疲劳寿命影响 越大.由表8可知:废弃橡胶粉掺量为10、20、30 kg/m³ 的水泥稳定碎石的6值小于基准组,说明掺入废弃橡胶 粉后疲劳寿命对应力变化的敏感性略降低;废弃橡胶 粉掺量为10、20 kg/m³的水泥稳定碎石的a平均值分别 为8.5504和11.6269,说明其抗疲劳性能显著;废弃橡 胶粉掺量为30 kg/m³的水泥稳定碎石的a平均值与基 准组基本相同,说明其抗疲劳性能没有显著提高.这是 因为材料的抗疲劳性能不仅与材料的组成有关,也与 材料的强度有关.掺加废弃橡胶粉后,虽然水泥稳定碎 石疲劳寿命对应力的敏感性略降低,但是当废弃橡胶 粉掺量增加时,其抗弯强度降低明显.

3 抗疲劳机理分析

3.1 双K断裂参数

断裂韧度是描述材料对裂纹扩展阻力大小的参

数,可用来表征材料裂纹扩展的难易程度,特别是水 泥稳定碎石出现裂缝后,循环荷载作用下的裂缝扩 展与稳定性,并可进一步分析水泥稳定碎石的疲劳 机理.

根据表5配合比和前文分析结果,成型三点弯曲 梁试件,J-0代表基准组水泥稳定碎石试件,X-10、 X-20分别代表橡胶粉掺量为10、20kg/m³的试件.测 试得到各试件的最大载荷 P_{max}、临界裂缝张口位移 CMOD_e、起裂韧度 K^Q_{IC}和失稳韧度 K^S_{IC},结果见表9.

表 9 三点弯曲梁的P_{max}, CMOD_e和双K断裂参数 Table 9 P_{max}, CMOD_e and double K fracture parameters of three-point bending beams

Specimen	$P_{\rm max}/{\rm kN}$	CMOD _e / μm	$K_{ m IC}^{ m Q}/(m MPaullet$ m ^{1/2})	$K_{ m IC}^{ m S}/(m MPaullet m^{1/2})$
J-0	6.880	60	0.726	1.289
X-10	8.265	82	1.083	1.676
X-20	9.413	92	1.876	2.844

由表9可知:基准组试件的起裂韧度 $K_{\rm fc}^{\rm Q}$ 为 0.726 MPa·m^{1/2},失稳韧度 $K_{\rm fc}^{\rm S}$ 为1.289 MPa·m^{1/2};废 弃橡胶粉掺量为10、20 kg/m³的试件起裂韧度分别 是基准组的1.49、2.58倍,失稳韧度分别是基准组的 1.30、2.21倍.说明当废弃橡胶粉掺量小于20kg/m³ 时,水泥稳定碎石的断裂韧度随废弃橡胶粉掺量增 加而增大.掺加废弃橡胶粉的水泥稳定碎石起裂韧 度和失稳韧度均大于基准组,有利于抵御循环荷载 作用下的裂缝扩展与稳定性,提高水泥稳定碎石抗 疲劳性能.

3.2 断裂能

水泥稳定碎石的疲劳性能取决于断裂能.试件 断裂能越大,水泥稳定碎石的抗疲劳性能越优;断裂 能越小,抗疲劳性能越差.绘制荷载-裂缝张开口位 移(P-CMOD)曲线,如图2所示.试件P-CMOD曲线 下包围的面积,代表水泥稳定碎石的断裂能大小.

由图2可见:废弃橡胶粉掺量为10、20 kg/m³的 水泥稳定碎石P-CMOD曲线下的面积均大于基准水 泥稳定碎石,这表明废弃橡胶粉水泥稳定碎石具有 较大的断裂能,对循环载荷能量有较高的吸收能力, 抗疲劳性能较优;废弃橡胶粉掺量为20 kg/m³的水 泥稳定碎石抗疲劳性能更优,其断裂能大于废弃橡 胶粉掺量为10 kg/m³时.

4 结论

(1)废弃橡胶粉掺量为10、20 kg/m³的水泥稳定 碎石起裂韧度分别是基准组的1.49、2.58倍,失稳韧 度分别是基准组的1.30、2.21倍,断裂能增大,疲劳寿 命延长,抗疲劳性能显著.

(2)当废弃橡胶粉掺量为30 kg/m³时,水泥稳定 碎石的抗疲劳性能并没有显著提高,这可能与废弃 橡胶粉掺量过大使强度降低有关.今后研究可在增 加废弃橡胶粉掺量的同时,降低水灰比,以期提高废 弃橡胶粉水泥稳定碎石的强度,进一步提升其抗疲 劳性能.

(3)废弃橡胶粉粒径、级配及其在水泥稳定碎石

内部的分布,也影响其抗疲劳性能.后续研究可优化 废弃橡胶粉粒径和级配组成,使废弃橡胶粉在水泥 稳定碎石内部均匀分布,将有利于提升橡胶水泥稳 定碎石的抗疲劳性能.

(4) 掺加废弃橡胶粉的水泥稳定碎石的抗劈裂性 能、耐水性能和抗老化性能,也决定着废弃橡胶粉水 泥稳定碎石基层的服役寿命,进而影响其在实际工程 中的推广应用,这也是今后研究亟待解决的问题.

参考文献:

- [1] 苏沛丰,刘玉,李苗苗,等.预裂型水泥稳定碎石强度与温缩特 性机理仿真[J].交通运输工程学报,2022,22(4):128-139.
 SU Peifeng, LIU Yu, LI Miaomiao, et al. Simulation on strength and thermal shrinkage property mechanisms of pre-cracked cement stabilized crushed stone[J]. Journal of Traffic and Transportation, 2022, 22(4):128-139.(in Chinese)
- [2] 周浩,沙爱民.半刚性材料疲劳性能材料组成影响因素分析[J]. 武汉理工大学报,2012,34(1):41-42.
 ZHOU Hao, SHA Aimin. Analysis on the influences of material composition on semi-rigid base fatigue property[J]. Journal of Wuhan University of Technology, 2012, 34(1):41-42.(in Chinese)
- [3] 何小兵,杨庆国,何国基.聚丙烯纤维增强水泥稳定碎石基层材料的抗冲刷性能[J].建筑材料学报,2010,13(2):263-267,276.
 HE Xiaobing, YANG Qingguo, HE Guoji. Anti-erosion property of polypropylene fiber reinforced cement-stabilized macadam base material[J]. Journal of Building Materials, 2010, 13(2):263-267, 276.(in Chinese)
- [4] 肖鹏,李平.掺SBR胶乳与聚丙烯纤维水泥稳定碎石性能比较
 [J].建筑材料学报,2010,13(6):817-820.
 XIAO Peng, LI Ping. Contrastive analysis of performance cement-stabilized aggregate modified with SBR emulsion and polypropylene fibers[J]. Journal of Building Materials, 2010, 13 (6):817-820.(in Chinese)
- [5] 袁龄卿,梁乃兴,赵春花,等.PVA纤维分散程度对水泥砂浆和水泥稳定碎石力学性能的影响[J].建筑材料学报,2021,24(5):921-929.

YUAN Lingqing, LIANG Naixing, ZHAO Chunhua, et al. Effect of PVA fibers dispersion on mechanical properties of cement mortar and cement stabilized macadam [J]. Journal of Building Materials, 2021, 24(5):921-929.(in Chinese)

- [6] 熊延华,屈会朋,阳应荣,等.聚乙烯醇纤维水泥稳定碎石的疲劳性能研究[J].硅酸盐通报,2022,41(10):3493-3500.
 XIONG Yanhua, QU Huipeng, YANG Yingrong, et al. Fatigue properties of polyvinyl alcohol fiber cement stabilized crushed stone
 [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3493-3500.(in Chinese)
- [7] KHATTAK M J, ALRASHIDI M. Durability and mechanistic of fiber reinforced soil-cement mixtures[J]. International Journal of Pavement Engineering, 2006, 7(1):53-62.

(下转第98页)