文章编号:1007-9629(2025)06-0518-08

无砂混凝土基层配合比的优化与抗冲刷性能

刘宏富^{1,2,*}, 谭方灵¹, 叶润鑫³, 蔡 军¹, 黄云涌¹

(1.长沙理工大学 交通学院, 湖南 长沙 410114; 2.长沙理工大学 公路养护技术国家工程研究中 心, 湖南 长沙 410114; 3.广州市市政集团设计院有限公司, 广东 广州 510060)

摘要:为了提升无砂混凝土基层材料的抗冲刷特性,以7d无侧限抗压强度、渗透系数和抗压回弹模 量为评价指标,采用响应面法确定了无砂混凝土的最优配合比,开展了冲刷试验,分析了冲刷时间、 冲刷频率和冲击强度对无砂混凝土抗冲刷性能的影响,揭示了无砂混凝土经过不同冲刷条件后强度 和模量的衰减规律。结果表明:无砂混凝土的最优配合比为级配 I、水灰比0.35和目标孔隙率 18%;相较于水泥稳定碎石而言,无砂混凝土具有更好的力学特性和抗冲刷性能。

关键词:无砂混凝土;响应面法;配合比;抗冲刷性能;力学特性

中图分类号:U414 文献标志码:A **doi**:10.3969/j.issn.1007-9629.2025.06.004

Mix Proportion Optimization and Anti-scouring Performance of No-Fines Concrete Base

LIU Hongfu^{1,2,*}, TAN Fangling¹, YE Runxin³, CAI Jun¹, HUANG Yunyong¹

(1. School of Transportation, Changsha University of Science and Technology, Changsha 410114, China;
 2. National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science and Technology, Changsha 410114, China;
 3. Guangzhou Municipal Group Designing Institute Co., Ltd., Guangzhou 510060, China)

Abstract: To improve the anti-scouring performance of no-fines concrete base material, the optimal mix proportion of no-fines concrete was determined by the response surface method, using 7-day unconfined compressive strength, permeability coefficient, and compressive resilient modulus as the evaluation indices. The scouring test of no-fines concrete was carried out to analyze the effects of scouring time, scouring frequency, and impact strength on anti-scouring performance and to reveal the attenuation law of strength and modulus of no-fines concrete after different scouring conditions. The results show that the optimal mix ratio of no-fines concrete is gradation I, with a water-cement ratio of 0.35 and a target porosity of 18%. Compared to cement-stabilized gravel, no-fines concrete exhibits better mechanical properties and anti-scouring performance.

Key words : no-fines concrete; response surface method; mix proportion; anti-scouring performance; mechanical property

基层材料的抗冲刷能力不足是导致路面脱空、 唧泥、裂缝及沉陷等病害的主要原因之一^[1]。在行车 荷载作用下,渗入路面结构内部的滞留水对基层进 行反复冲刷,从而引起基层材料的破坏,导致路面结 构失稳。无砂混凝土作为一种排水基层材料,具有 良好的透气、透水性能和较高的强度,能有效排出结 构层内部的滞留水,减缓路面基层受损^[2]。该材料最 早发展于欧美和日本等国家^[3],国内外学者通过在透

收稿日期:2024-06-14;修订日期:2024-12-13

基金项目:国家自然科学基金资助项目(52478439,52078064);长沙理工大学科研创新项目(CSLGCX23020)

第一作者(通讯作者):刘宏富(1983—),男,湖南汉寿人,长沙理工大学副教授,博士生导师,博士。E-mail:lhf0625@csust.edu.cn

水混凝土中添加硅灰、减水剂等材料,提高其力学性能和耐久性,扩大透水混凝土的应用范围,使其既可应用于人行道,也可应用于路面基层和面层,从而有效减少路面病害的发生^[46]。然而,国内外学者对无砂混凝土的研究主要聚焦于力学特性,针对抗冲刷性能的研究较少。

针对上述问题,本文基于响应面法(RSM)确 定了无砂混凝土的最优配合比,并开展了冲刷试 验,揭示了无砂混凝土经过不同冲刷条件后强度和 模量等力学参数的衰减规律,研究结果可为提升路 面基层材料的抗冲刷性能及其工程应用提供参考。

1 试验

1.1 原材料

相较于普通混凝土而言,无砂混凝土不含或 少含细集料,因此无砂混凝土强度的形成主要依 靠粗集料本身的强度和水泥浆的黏结作用。采用 P·O 42.5普通硅酸盐水泥和粒径 4.75~26.50 mm 的粗集料制备试件^[7]。依据 JTG 3432—2024《公 路工程集料试验规程》对粗集料的各项指标进行 测试,结果显示水泥和粗集料的基本性能符合 JTG/T F20—2015《公路路面基层施工技术细则》 的技术要求。

1.2 试件制备

在查阅国内外相关文献的基础上^[8],选择水灰比 m_w/m_B(质量比)为0.30、0.35、0.40,目标孔隙率 φ (体 积分数)为15%、18%、21%,无砂混凝土的级配见表 1。对不同级配混合集料的表观密度、表干密度、毛体 积密度和振实密度进行测定,并参照JTGF30—2014 《公路水泥混凝土路面施工技术细则》,采用体积法计 算单位体积下无砂混凝土各组分的质量。

混凝土振捣工艺效果是影响成型质量的主要因 素^[9]。已有研究证明,采用室内振动压实方法进行水 泥稳定碎石设计的方式更加合理^[10]。根据配合比计 算结果,采用振动压实方法成型试件,圆柱体试件尺 寸为φ150×150 mm。在自然条件下放置2~6 h后 脱模,随后逐个套袋移入(20±2)℃、相对湿度 RH≥ 95%的标准养护室中养生。其中用于无侧限抗压强 度、抗压回弹模量测试试件分别养生至7、90 d,并在 试验前浸水24 h;渗水试验试件养生28 d并在试验前 置于室温下风干。

1.3 试验方案

混凝土的强度取决于两方面:一是正确的配合比设计,二是规范的施工和养护^[11]。响应面法是一种常用的统计方法,其每1个响应与变量数量相互关联,以确定变量之间的影响、关系和相互作用^[12]。本文采用响应面法对无砂混凝土的级配(因素A)、水灰比(因素B)和目标孔隙率(因素C)进行设计以获得其最优组合,试验的因素和水平见表2,试验方案见表3。分别采用JTG 3441—2024《公路工程无机结合料稳定材料试验规程》对无砂混凝土进行无侧限抗压强度(T 0805—2024)、抗压回弹模量(T 0808—1994)、渗水试验(T 0859—2009)测试。

根据JTG 3441—2024 中 T 0860—2009 对最优 组合条件下的无砂混凝土进行冲刷试验,试件经 28 d 标准养生并在试验前浸水 24 h,测试其不同冲刷时间 t、冲刷频率f下的冲刷量 $m_{f^{0}}$ 在查阅水泥稳定碎石基 层材料抗冲刷性能相关文献基础上^[13-17],对无砂混凝 土和水泥稳定碎石两种材料在标准冲刷条件(冲刷 强度 I_{s} =0.5 MPa、f=10 Hz和t=30 min)下的冲刷 质量损失率进行对比。并分别根据JTG 3441—2024 中 T 0805—2024、T 0806—1994、T 0857—2009、T 0852—2009 对经过冲刷作用后的无砂混凝土试件进 行无侧限抗压强度、劈裂强度、动态抗压回弹模量、 劈裂回弹模量测试。

表1 无砂混凝土的级配 Table 1 Gradation(by mass) of no-fines concretes

						Unit: %
			Seieves	size/mm		
Item -	26.5	19	16	13.2	9.5	4.75
Gradation I	100.0	76.7	61.3	37.9	20.7	0
Gradation II	100.0	80.0	66.9	46.7	30.1	0.1
Gradation III	100.0	82.7	71.4	54.0	37.8	0.1
Upper limit of gradation	100.0	93.0	78.0	59.0	38.0	5.0
Gradation median	100.0	84.5	68.0	48.5	28.5	2.5
Lower limit of gradation	100.0	76.0	53.0	38.0	19.0	0

(1)

表 2	试验的因素和水平
Table 2	Factors and levels of test

Factor	Deremotor	C	Coding level			
r actor	Farameter	-1	0	1		
A	Gradation	Ι	П	Ш		
В	$m_{ m W}/m_{ m B}$	0.30	0.35	0.40		
С	$arphi$ / 0 /0	15	18	21		

表 3	试验方案
Table 3	Test scheme

Serial number	Сс	oding lev	vel	Serial Codin		oding lev	ng level	
	A	В	С	number	A	В	С	
1	0	1	-1	10	0	0	0	
2	0	0	0	11	0	0	0	
3	0	-1	1	12	0	-1	-1	
4	1	1	0	13	-1	1	0	
5	0	1	1	14	1	-1	0	
6	1	0	1	15	0	0	0	
7	0	0	0	16	-1	-1	0	
8	1	0	-1	17	-1	0	-1	
9	-1	0	1					

2 结果与讨论

2.1 基于响应面法配合比优化设计

以7d无侧限抗压强度*R*。、抗压回弹模量*E*。、渗透系数*K*作为响应变量,以级配(*A*)、水灰比(*B*)和目标孔隙率(*C*)为自变量构建响应面回归模型。响应面法试验结果见表4。

表 4 响应面法试验结果 Table 4 RSM test results

Serial number	R _c / MPa	E₅∕ MPa	$\frac{K/(\mathrm{mL} \boldsymbol{\cdot} \\ \mathrm{s}^{-1})}{\mathrm{s}^{-1}}$	Serial number	R₂∕ MPa	E₅∕ MPa	$\frac{K/(mL \cdot s^{-1})}{s^{-1}}$
1	4.5	$2\ 084$	48.1	10	4.0	$1\ 935$	46.5
2	3.5	$1\ 974$	46.5	11	3.8	$1\ 945$	49.8
3	4.9	2 0 4 6	47.2	12	4.1	1 872	49.3
4	3.8	$1 \ 905$	47.5	13	5.1	2 264	48.1
5	4.7	2 156	46.4	14	5.0	2 243	48.1
6	4.0	2 084	45.0	15	4.5	2 184	47.1
7	4.8	1 948	51.8	16	4.8	2 158	47.4
8	3.8	2 0 3 1	50.4	17	4.9	2 195	48.8
9	4.5	1 972	45.0				

由 Design Expert 13.0软件得到响应面回归模型为:

$$R_{c} = 4.91 - 0.476 \, 1A + 0.055 \, 9B - 0.083 \, 5C - 0.022AB - 0.080 \, 8AC + 0.188 \, 3BC - 0.218 \, 1A^{2} - 0.441 \, 5B^{2} - 0.312 \, 8C^{2}$$

 $E_{c} = 2\,208.8 - 30A - 27.12B - 43.88C - 7.75AB + 38.75AC - 9BC - \tag{2}$

 $41.4A^2 - 165.15B^2 - 112.65C^2$

K=47.88-0.532A+0.1519B+2.31C(3) 对响应面回归模型进行方差分析,结果见表5~
7(表中:R²为拟合优度;R²_{adj}为调整后的拟合优度;*
表示差异显著(P<0.05);**表示差异极显著(P<0.01))。由表5~7可见:R_c和E_c的非线性回归模型 拟合优度分别为0.9097、0.9192,可见模型拟合可靠 度较高;K的拟合结果为线性回归模型,其与无砂混 凝土目标孔隙率(C)大小直接相关,且目标孔隙率的
P<0.0001,而级配(A)和水灰比(B)对其影响较小, 不存在因素之间的交互作用;各因素F值的大小不
同,说明其对7d无侧限抗压强度和抗压回弹模量的 影响存在差异;自变量对7d无侧限抗压强度的影响
顺序为级配(A)>目标孔隙率(C)>水灰比(B),对
抗压回弹模量的影响顺序为目标孔隙率(C)>级配
(A)>水灰比(B)。

响应面的曲面越陡峭,说明两个因素的交互作 用对响应值的影响越明显,反之影响越不明显。7d 无侧限抗压强度和抗压回弹模量的响应面图分别见 图1、2。由图1、2及表5、6可知,两个因素之间的交 互作用对7d无侧限抗压强度的影响顺序为水灰比 和目标孔隙率(BC)>级配和目标孔隙率(AC)>级 配和水灰比(AB),对抗压回弹模量的影响顺序为级 配和目标孔隙率(AC)>水灰比和目标孔隙率(BC)> 级配和水灰比(AB)。由此可见,水灰比和目标孔隙 率、级配和目标孔隙率之间的交互作用对响应值的 影响较大,而级配和水灰比之间的交互作用对响应 值的影响较小。在渗透系数响应面分析中,由于不 存在因素之间的交互作用,响应面为斜平面,故在此 未给出渗透系数响应面图。

根据响应面法回归模型和分析结果,考虑无砂混 凝土级配(A)、水灰比(B)和目标孔隙率(C)的最优配 合比为级配 I、水灰比0.35和目标孔隙率18%.此配 合比下无砂混凝土的7d无侧限抗压强度为5.1 MPa, 抗压回弹模量为2171 MPa,渗透系数为49 mL/s。

抗冲刷性能及不同冲刷条件下强度、模量结果 分析

基于响应面法得到无砂混凝土的最优配合比, 对其进行冲刷试验及不同冲刷条件下的强度、模量 试验,得到无砂混凝土的抗冲刷性能和力学性能衰 减规律。

Source	Sum of square	Degree of freedom	Mean square	F value	P value	Sgnificance
Mould	3.6500	9	0.4053	7.8400	0.0064	**
A	1.8100	1	1.8100	35.0700	0.0006	**
В	0.0250	1	0.0250	0.4830	0.5095	
С	0.0558	1	0.0558	1.0800	0.3335	
AB	0.0019	1	0.0019	0.0374	0.8521	
AC	0.0261	1	0.0261	0.5044	0.5005	
BC	0.1418	1	0.1418	2.7400	0.1417	
A^2	0.2002	1	0.2002	3.8700	0.0898	
B^2	0.8209	1	0.8209	15.8800	0.0053	**
C^2	0.4120	1	0.4120	7.9700	0.0257	*
Residual	0.3620	7	0.0517			
Lack of fit	0.1610	3	0.0537	1.0700	0.4563	
Pure error	0.2010	4	0.0502			
Cor total	4.0100	16				
R^2			0.90	97		
$R_{ m adj}^{2}$			0.79	3 7		
Source	Sum of square	Degree of freedom	Mean square	F value	P value	Sgnificanc
Mould	225 744, 57	9	25 082, 73	8,850.0	0.004 5	**
А	7 200.00	1	7 200.00	2.5400	0.1550	
В	5 886.12	1	5 886.12	2.0800	0.1927	
С	15 400.13	1	15 400.13	5.4300	0.0525	
AB	240.25	1	240.25	0.0848	0.7794	
AC	6 006.25	1	6 006.25	2.1200	0.1888	
	324.00	1	324.00	0.1143	0.745 2	
BC					0 154 6	
BC A^2	7 216.67	1	7 216.67	2.5500	0.154.6	
BC A^2 B^2	7 216.67 114 840.10	1 1	7 216.67 114 840.10	2.5500 40.5200	0.134.6	**
BC A^2 B^2 C^2	7 216. 67 114 840. 10 53 431. 67	1 1 1	7 216.67 114 840.10 53 431.67	2. 550 0 40. 520 0 18. 850 0	0. 134 6 0. 000 4 0. 003 4	**
BC A^{2} B^{2} C^{2} Residual	7 216.67 114 840.10 53 431.67 19 839.55	1 1 1 7	7 216. 67 114 840. 10 53 431. 67 2 834. 22	2. 550 0 40. 520 0 18. 850 0	0. 134 6 0. 000 4 0. 003 4	**
BC A^{2} B^{2} C^{2} Residual Lack of fit	7 216.67 114 840.10 53 431.67 19 839.55 12 236.75	1 1 1 7 3	7 216. 67 114 840. 10 53 431. 67 2 834. 22 4 078. 92	2. 550 0 40. 520 0 18. 850 0 2. 150 0	0. 134 6 0. 000 4 0. 003 4 0. 237 2	**
BC A^{2} B^{2} C^{2} Residual Lack of fit Pure error	7 216. 67 114 840. 10 53 431. 67 19 839. 55 12 236. 75 7 602. 80	1 1 1 7 3 4	7 216.67 114 840.10 53 431.67 2 834.22 4 078.92 1 900.70	2. 550 0 40. 520 0 18. 850 0 2. 150 0	0. 134 6 0. 000 4 0. 003 4 0. 237 2	**
BC A^{2} B^{2} C^{2} Residual Lack of fit Pure error Cor total	7 216. 67 114 840. 10 53 431. 67 19 839. 55 12 236. 75 7 602. 80 245 584. 12	1 1 7 3 4 16	7 216. 67 114 840. 10 53 431. 67 2 834. 22 4 078. 92 1 900. 70	2. 550 0 40. 520 0 18. 850 0 2. 150 0	0. 134 6 0. 000 4 0. 003 4 0. 237 2	**
BC A^{2} B^{2} C^{2} Residual Lack of fit Pure error Cor total R^{2}	7 216. 67 114 840. 10 53 431. 67 19 839. 55 12 236. 75 7 602. 80 245 584. 12	1 1 7 3 4 16	7 216. 67 114 840. 10 53 431. 67 2 834. 22 4 078. 92 1 900. 70 0. 919	2. 550 0 40. 520 0 18. 850 0 2. 150 0	0. 134 6 0. 000 4 0. 003 4 0. 237 2	**
BC A^{2} B^{2} C^{2} Residual Lack of fit Pure error Cor total R^{2} R^{2}_{adj}	7 216. 67 114 840. 10 53 431. 67 19 839. 55 12 236. 75 7 602. 80 245 584. 12	1 1 7 3 4 16	7 216. 67 114 840. 10 53 431. 67 2 834. 22 4 078. 92 1 900. 70 0. 919 0. 819	2. 550 0 40. 520 0 18. 850 0 2. 150 0	0. 134 6 0. 000 4 0. 003 4 0. 237 2	**

表 5 7 d 无侧限抗压强度回归方程方差分析

	Table 7 Analysis of variance for regression equation of K								
Source	Sum of square	Degree of freedom	Mean square	F value	P value	Significance			
Mould	45.1800	3	15.0600	25.3100	< 0.000 1	**			
A	2.2600	1	2.2600	3.8000	0.0730				
В	0.184 5	1	0.1845	0.3101	0.5871				
C	42.7300	1	42.7300	71.8100	< 0.000 1	**			
Residual	7.7400	13	0.5951						
Lack of fit	5.9600	9	0.6623	1.4900	0.3710				
Pure error	1.7800	4	0.4438						
Cor total	52.9200	16							
R^2		0.8538							
$R_{ m adj}^2$			0.	820 1					

无砂混凝土冲刷量和冲刷质量损失率见图3。 由图3可见:在不同冲刷条件下,无砂混凝土的冲刷 量均表现出较为一致的上升趋势;冲刷30min比冲 刷15min时的冲刷量有较大的增长,冲刷60min时 的冲刷量趋于平缓,这是因为随着冲刷时间的增加, 基层材料表面先冲刷较为疏松的集料,而剩余的集 料由于内摩擦阻力较大,不易被动水冲刷破坏;无砂 混凝土在标准冲刷条件下的冲刷质量损失率为 0.25%,而不同文献中水泥稳定碎石的平均冲刷质量 损失率达到0.90%,仅为一般水泥稳定碎石冲刷质 量损失率的28%。由此可见,相较于水泥稳定碎石 材料,无砂混凝土具有更好的抗冲刷性能。

Fig. 3 Scouring amount and mass loss rate of no-fines concrete

冲刷量 m_f 关于 $t_s f_s I_s$ 的拟合线性回归模型为: $m_f = 0.251t + 0.233f + 11.145I_s$ (4)

根据该回归模型求出冲刷量的残差 ε 与学生化 残差 r,得到学生化残差的正态 Q-Q值,结果见图4。 由图4可见:除少数点外,大部分的数据点在正态分 布的理论直线上,可以认定 m_f回归模型的学生化残 差服从正态分布;m_f残差图不呈现任何明显的趋势 性,通过残差分析,可以认定 m_f与t_xf_xL_x之间的线性回 归模型是较为合理的;m_f线性回归关系显著,且拟合 优度 R²=0.836 0,即线性部分描述了 m_r的绝大部分 变化量。

基于响应面法得到的最优配合比,对经过标准 冲刷作用后的无砂混凝土试件进行强度和模量试 验,结果见图5、6。

Fig. 4 Q-Q scatter plots of studentized residuals and residuals of regression model of m_f

t/min: \Box 15; \Box 30; \boxtimes 60

Fig. 5 Compressive strength and dynamic compressive resilient modulus of no-fines concrete under different scouring conditions

 $t/\min: \Box 15; \Box 30; \boxtimes 60$

图6 不同冲刷条件下无砂混凝土劈裂强度和劈裂回弹模量

Fig. 6 Splitting strength and splitting resilience modulus of no-fines concrete under different scouring conditions

由图 5 可见:随着冲刷时间的增加,无砂混凝土强 度和模量的衰减速率逐渐减缓,其主要原因是无砂混 凝土具有较大的孔隙率,在受到循环荷载作用后,内 部结构发生一定的微小位移致使其结构密实;未冲刷 时无砂混凝土抗压强度和动态抗压回弹模量均值为 5.6、22 526 MPa,经标准冲刷作用后的抗压强度和动 态抗压回弹模量均值分别为4.7、13 541 MPa,分别下 降了 16%、40%。水泥稳定碎石抗压强度和动态抗压 回弹模量均值分别为4.3、18 923 MPa,经标准冲刷作 用后的抗压强度和动态抗压回弹模量均值分别为 2.0、9 336 MPa^[18-19],分别下降了 53%、51%。

由图 6 可见:无砂混凝土的劈裂强度和劈裂回弹 模量衰减规律基本一致,随着冲刷时间的增加,劈裂 强度和劈裂回弹模量不断降低,衰减幅度也逐渐减 小;无砂混凝土劈裂强度和劈裂回弹模量均值分别 为1.5、2 986 MPa,经标准冲刷作用后的劈裂强度和 劈裂回弹模量均值分别为1.0、2 506 MPa,分别下降 了 33%、16%。养生 28 d 的水泥稳定碎石劈裂强度 仅为0.2~0.5 MPa^[20-21],即使经标准冲刷作用后无砂 混凝土的劈裂强度仍为水泥稳定碎石的 2~5倍。因 此,与水泥稳定碎石对比发现,无砂混凝土基层材料 具有更为优异的力学特性和抗冲刷性能。

3 结论

(1)基于3因素3水平的无砂混凝土配合比优化 设计方案,经响应面分析与方差分析,得到了无砂混 凝土最优配合比为级配I、水灰比0.35和目标孔隙 率18%。

(2)无砂混凝土在标准冲刷条件下的冲刷质量 损失率为0.25%,仅为一般水泥稳定碎石冲刷质量 损失率的28%。

(3)在标准冲刷作用后,无砂混凝土抗压强度、 劈裂强度、动态抗压回弹模量和劈裂回弹模量分别 下降了16%、33%、40%、16%。相较于水泥稳定碎 石,无砂混凝土有着更高的强度和模量,且经标准冲 刷作用后强度和模量衰减的幅度更小,无砂混凝土 基层材料具有更为优异的力学特性和抗冲刷性能。

参考文献:

[1] 朱唐亮,谈至明,周玉民.半刚性基层材料抗冲刷性能试验研究[J].建筑材料学报,2013,16(4):608-613.
 ZHU Tangliang, TAN Zhiming, ZHOU Yumin. Experimental

research on erosion-resistance performances of semi-rigid base materials[J]. Journal of Building Materials, 2013, 16(4):608-613. (in Chinese)

- [2] 汪超,张同生,谢晓庚,等.基于骨料球形度的透水混凝土配合 比设计方法[J].建筑材料学报,2022,25(3):235-241.
 WANG Chao, ZHANG Tongsheng, XIE Xiaogeng, et al. Mix proportion design method of pervious concrete based on aggregate sphericity [J]. Journal of Building Materials, 2022, 25(3): 235-241.(in Chinese)
- [3] ĆOSIĆ K, KORAT L, DUCMAN V, et al. Influence of aggregate type and size on properties of pervious concrete [J]. Construction and Building Materials, 2015, 78:69-76.
- [4] YANG J, JIANG G L. Experimental study on properties of pervious concrete pavement materials[J]. Cement and Concrete Research, 2003, 33(3):381-386.
- [5] ZHONG R, WILLE K. Material design and characterization of high performance pervious concrete[J]. Construction and Building Materials, 2015, 98:51-60.
- [6] CHANDRAPPA A K, BILIGIRI K P. Pervious concrete as a sustainable pavement material—Research findings and future prospects: A state-of-the-art review[J]. Construction and Building Materials, 2016, 111:262-274.
- [7] 曲广雷, 闫宗伟, 郑木莲, 等. 基于神经网络与回归分析的多 孔混凝土性能预测[J]. 吉林大学学报(工学版), 2025, 55(1): 269-282.
 QU Guanglei, YAN Zongwei, ZHENG Mulian, et al. Performance prediction of porous concrete based on neural network and regression analysis[J]. Journal of Jilin University (Engineering and Technology), 2025, 55(1): 269-282.(in Chinese)
- [8] YANG Z F, MA W, SHEN W G, et al. The aggregate gradation for the porous concrete pervious road base material[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2008, 23:391-394.
- [9] 田正宏,马元山,李佳杰. 混凝土振捣密实性研究进展[J]. 建 筑材料学报, 2024, 27(1):46-57.
 TIAN Zhenghong, MA Yuanshan, LI Jiajie. Research progress on vibration compaction of concrete [J]. Journal of Building Materials, 2024, 27(1):46-57.(in Chinese)
- [10] 李智,刘健,靖红晨,等.基于微观骨架指标的水泥稳定碎石 振动成型时间研究[J].建筑材料学报,2019,22(4):553-558.
 LI Zhi, LIU Jian, JING Hongchen, et al. Vibration compaction time of cement-stabilized crushed rock material based on micro-skeleton indices [J]. Journal of Building Materials, 2019, 22(4):553-558.(in Chinese)
- [11] 汪声瑞,胡畔,陈思宝,等.基于耦合BAS-MLP的混凝土抗压 强度预测[J].建筑材料学报,2023,26(7):705-715.
 WANG Shengrui, HU Pan, CHEN Sibao, et al. Prediction of concrete compressive strength based on coupled BAS-MLP [J].
 Journal of Building Materials, 2023, 26(7):705-715.(in Chinese)
- [12] 黄明清,蔡思杰,刘青灵.正交试验与响应面法耦合优化采矿 充填材料配比[J].实验技术与管理,2023,40(6):35-41.
 HUANG Mingqing, CAI Sijie, LIU Qingling. Optimization of mining filling material ratios by coupling orthogonal testing and response surface methodology[J]. Experimental Technology and Management, 2023, 40(6):35-41.(in Chinese)

- [13] 黄祯敏,肖敏,彭波,等.基于细集料填充系数的水泥稳定碎 石性能研究[J].公路,2017,62(3):29-35.
 HUANG Zhenmin, XIAO Min, PENG Bo, et al. Study of cement stabilized macadam properties based on fine aggregate filling coefficient[J]. Highway, 2017, 62(3):29-35.(in Chinese)
- [14] 但路昭,陈飞,陈伟,等.基于振动拌和工艺的水泥稳定碎石 混合料路用性能研究[J].公路交通技术,2018,34(5):21-26.
 DAN Luzhao, CHEN Fei, CHEN Wei, et al. Road performance study of cement stabilized gravel mixture based on vibratory mixing technology[J]. Technology of Highway and Transport, 2018,34(5):21-26.(in Chinese)
- [15] 涂亮亮,许勐,范璐璐,等.基于振动模式的再生水泥稳定碎 石基层力学性能研究[J].武汉理工大学学报,2022,44(9): 20-26.

TU Liangliang, XU Meng, FAN Lulu, et al. Research on mechanical properties of recycled cement stabilized crushed stone based on vibration mode [J]. Journal of Wuhan University of Technology, 2022, 44(9):20-26. (in Chinese)

[16] 查旭东,曹艳霞,刘国才.抗裂型水泥稳定碎石配合比设计及 路用性能研究[J].长沙理工大学学报(自然科学版),2013,10 (1):1-6.

ZHA Xudong, CAO Yanxia, LIU Guocai. Research on mix design and pavement performances for anti-crack cement stabilized macadam [J]. Journal of Changsha University of Science and Technology(Natural Science), 2013, 10(1):1-6.(in Chinese)

[17] 张超.透水水泥稳定碎石使用性能试验与分析[J].公路,2014, 59(3):161-164.

ZHANG Chao. Test and analysis on the performance of the

cement treated permeable base[J]. Highway, 2014, 59(3): 161-164. (in Chinese)

- [18] 郭瑞,蒋红,刘冲,等.路面半刚性基层抗冲刷性能试验研究
 [J].陕西理工大学学报(自然科学版), 2018, 34(3):17-22.
 GUO Rui, JIANG Hong, LIU Chong, et al. Experimental study on scour resistance of semi-rigid subgrade for pavements [J].
 Journal of Shaanxi University of Technology(Natural Science), 2018, 34(3):17-22.(in Chinese)
- [19] 刘金亮,汪胜,史柯,等.水泥混凝土路面基层材料抗冲刷性 能及疲劳特性[J].公路交通科技,2022,39(6):43-49,90.
 LIU Jinliang, WANG Sheng, SHI Ke, et al. Anti-erosion performance and fatigue characteristics of cement concrete pavement base materials [J]. Journal of Highway and Transportation Research and Development, 2022, 39(6):43-49, 90. (in Chinese)
- [20] 韩恒梅,李军.水泥稳定碎石路面基层的强度性能试验研究[J].
 筑路机械与施工机械化,2016,33(10):41-45.
 HAN Hengmei, LI Jun. Experimental study on strength properties of cement stabilized aggregate base[J]. Road Machinery and Construction Mechanization, 2016, 33 (10): 41-45. (in Chinese)
- [21] 周若来, 鄢光宇, 王建章. 保湿养生膜养生下水稳碎石力学性 能研究[J]. 公路交通科技(应用技术版), 2016, 12(5):205-206.
 ZHOU Ruolai, YAN Guangyu, WANG Jianzhang. Study on mechanical properties of water-stabilized gravel under moisturizing and nourishing membrane nourishment[J]. Highway Transportation Science and Technology (Applied Technology), 2016, 12(5): 205-206. (in Chinese)